K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2015

101995=100....000(1995 chữ số 0) chia cho 9 dư1

(101995+8):9 chia hết cho 9 

vậy (101995+8) : 9 la 1 so nguyen

26 tháng 9 2020

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

15 tháng 12 2017

đặt \(\text{Ư}CLN_{\left(2n+7;2n+9\right)}=d\)  ( d  \(\in\) N)

\(\Rightarrow\hept{\begin{cases}2n+7⋮d\\2n+9⋮d\end{cases}}\Rightarrow2n+9-\left(2n+7\right)⋮d\)

                                \(\Rightarrow2n+9-2n-7\)  \(⋮d\)

                                \(\Rightarrow2\)                                   \(⋮d\)

\(\Rightarrow d\in\text{ }\left\{1;2\right\}\)

vì cả 2 số đều là số lẻ nên ko chia hết cho 2   \(\Rightarrow\) loại  \(d=2\)

\(\Rightarrow d=1\)

\(\Rightarrow\text{Ư}CLN_{\left(2n+9;2n+7\right)}=1\)

vậy 2 số  \(2n+7\)và   \(2n+9\)   là 2 số nguyên tố cùng nhau

chúc bạn học giỏi ^^

8 tháng 1 2017

Gọi a bằng ƯC [ m, mn + 8 ].

Ta có : m chia hết cho a [ m là lẻ suy ra a cũng là lẻ ].

Suy ra : mn chia hết cho a.

Từ đó , ta lại có: mn + 8 chia hết cho a và mn + - mn chia hết cho a.

Từ đó, ta thấy 8 sẽ chia hết cho a

=> a thuộc Ư [8]= {1,2,4,8}

Vì a là lẻ nên a = 1;Ư[mn,mn+8] = 1.

Và vì thế ta biết được m và mn + 8 là 2 số nguyên tố cùng nhau.

hihihihihihi

8 tháng 1 2017

Gọi \(d=ƯCLN\left(m,m.n+8\right)\)

\(\Rightarrow\left\{\begin{matrix}m⋮d\\m.n+8⋮d\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}m.n⋮d\\m.n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(m.n+8\right)-\left(m.n\right)⋮d\Rightarrow8⋮d\)

\(\Rightarrow d\in\left\{1;2;4;8\right\}\) ; Mà m là số lẻ \(\Rightarrow d=1\RightarrowƯCLN\left(m,m.n+8\right)=1\)

Vậy ...

24 tháng 2 2016

vi p la so nguyen to nen p khong chia het cho 3 

=>p=2k+1 hoac 2k+2

- xet p=2k+1 thi 8p+1=8(2k+1)+1

                                =16k+8+1

                                = 16k+10

                                = 2(8k+5)

vi 2 chia het cho 2 nen 2(8k+8)  chia het cho 2

=>8p+1 la hop so.vo li

=>p khac 2k+1

- xet p=2k+2 thi 4p+1=4(2k+2)+1

                                = 8k+8+1

                                =8k+10

                                 =2(4k+5)

vi 2 chia het cho 2 nen 2(4k+5) chia het cho 2

=>4p+1 la hop so

vay 4p+1 la hop so

11 tháng 1 2018

Cũng thế nhưng xét trực tiếp 3 số khác: 
* Xét: p # 3 
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

11 tháng 1 2018

* Xét: p # 3 
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số

bif03jpa1gms_500

9 tháng 1 2016

Đặt UCLN(2n + 3 ; 4n + 8) = d

2n + 3 chia hết cho d => 4n + 6 chia het cho d

< = > [(4n + 8) - (4n + 6)] chia hết cho d

2 chia hết cho d mà 2n + 3 lẻ 

=> UCLN(2n  + 3 ; 4n + 8) = 1 

 

9 tháng 1 2016

Vì 2n+3 và 4n+8 nguyên tố cùng nhau nên có : ƯCLN ( 2n+3 , 4n+8 ) = 1

Có : 2n + 3 = 2n.2+3.2

                 = 4n    +6

Lại có :  (4n+8) - (4n+6) chia hết cho d

          =      2            chia hết cho d

Nhưng 2 là số lẻ nên ƯCLN ( 2n+3,4n+8)=1

Vậy 2n+3 và 4n+8 nguyên tố cùng nhau 

   Tick cho mình nha !!!!!!!