Tìm x: 3(x-1)^2+(x+5)(2-3x)=25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(x-1\right)^2+\left(x+5\right)\left(2-3x\right)=-25\)
\(\Leftrightarrow3x^2-6x+3-3x^2-13x+10=-25\)
\(\Leftrightarrow-19x=-38\Leftrightarrow x=2\)
\(\Rightarrow3x^2-6x+3+2x-3x^2+10-15x=-25\\ \Rightarrow-19x=-38\\ \Rightarrow x=2\)
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
\(a,\left(5x-3\right)\left(3x+1\right)-\left(15x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left(15x^2-4x-3\right)-\left(15x^2-29x-2\right)=0\)
\(\Rightarrow15x^2-4x-3-15x^2+29x+2=0\)
\(\Rightarrow25x-1=0\)
\(\Rightarrow x=\dfrac{1}{25}\)
\(----------\)
\(b,x^2+\left(x+5\right)\left(x-3\right)-25=0\)
\(\Rightarrow x^2+x^2+2x-15-25=0\)
\(\Rightarrow2x^2+2x=40\)
\(\Rightarrow2x\left(x+1\right)=40\)
\(\Rightarrow x\left(x+1\right)=20\)
\(\Rightarrow x;x+1\) là ước của 20
mà \(x;x+1\) là hai số nguyên liên tiếp \(\left(x\in Z\right)\)
nên \(x\left(x+1\right)=4.5=\left(-5\right).\left(-4\right)=20\)
\(\Rightarrow x\in\left\{4;-5\right\}\)
a: =>15x^2+5x-9x-3-15x^2+30x-x+2=0
=>25x-1=0
=>x=1/25
b: =>x^2+x^2+2x-15-25=0
=>2x^2+2x-40=0
=>x^2+x-20=0
=>(x+5)(x-4)=0
=>x=4 hoặc x=-5
a: =>(x-5)(x+5)+(x-5)(3x-15)=0
=>(x-5)(x+5+3x-15)=0
=>(x-5)(4x-10)=0
=>x=5 hoặc x=5/2
c: =>x^3-3x^2+2x^2-6x-8x+24=0
=>(x-3)(x^2+2x-8)=0
=>(x-3)(x+4)(x-2)=0
=>\(x\in\left\{3;-4;2\right\}\)
Bài 1.
\(a, (3x-4)^2\)
\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)
\(=9x^2-24x+16\)
\(b,\left(1+4x\right)^2\)
\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)
\(=16x^2+8x+1\)
\(c,\left(2x+3\right)^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)
\(=8x^3+36x^2+54x+27\)
\(d,\left(5-2x\right)^3\)
\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)
\(=125-150x+60x^2-8x^3\)
\(e,49x^2-25\)
\(=\left(7x\right)^2-5^2\)
\(=\left(7x-5\right)\left(7x+5\right)\)
\(f,\dfrac{1}{25}-81y^2\)
\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)
\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)
Bài 2.
\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)
\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)
\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)
\(\Rightarrow x^2-10x+25-x^2+49=8\)
\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)
\(\Rightarrow-10x=-66\)
\(\Rightarrow x=\dfrac{33}{5}\)
\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)
\(\Rightarrow4x^2+20x+25-4x^2+4=10\)
\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)
\(\Rightarrow20x=-19\)
\(\Rightarrow x=\dfrac{-19}{20}\)
#\(Toru\)
Bài 1
a) (3x - 4)²
= (3x)² - 2.3x.4 + 4²
= 9x² - 24x + 16
b) (1 + 4x)²
= 1² + 2.1.4x + (4x)²
= 1 + 8x + 16x²
c) (2x + 3)³
= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³
= 8x³ + 36x² + 54x + 27
d) (5 - 2x)³
= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³
= 125 - 150x + 60x² - 8x³
e) 49x² - 25
= (7x)² - 5²
= (7x - 5)(7x + 5)
f) 1/25 - 81y²
= (1/5)² - (9y)²
= (1/5 - 9y)(1/5 + 9y)
\(x\) \(\times\) \(\dfrac{4}{5}\) = 15
\(x\) = 15 : \(\dfrac{4}{5}\)
\(x\) = \(\dfrac{75}{4}\)
\(\dfrac{12}{25}\) \(\times\) \(x\) = \(\dfrac{4}{10}\)
\(x\) = \(\dfrac{4}{10}\) : \(\dfrac{12}{25}\)
\(x\) = \(\dfrac{5}{6}\)
a) Ta có: \(7x^2-28=0\)
\(\Leftrightarrow7\left(x^2-4\right)=0\)
\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)
mà 7>0
nên (x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-2\right\}\)
b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)
\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)
mà \(\dfrac{2}{3}>0\)
nên x(x-2)(x+2)=0
hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-2;2\right\}\)
c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)
\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)
d) Ta có: \(\left(2x-1\right)^2-25=0\)
\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{3;-2\right\}\)
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
\(3\left(x-1\right)^2+\left(x+5\right)\left(2-3x\right)=25\)
\(3x^2-6x+3-3x^2-13x+10=25\)
\(-19x+13=25\)
\(-19=25-13\)
\(-19x=12\)
\(x=\frac{-12}{19}\)
\(3\left(x-1\right)^2+\left(x+5\right)\left(2-3x\right)=25\)
\(3\left(x^2-2x+1\right)+2x-3x^2+10-15x=25\)
\(3x^2-6x+3+2x-3x^2+10-15x=25\)
\(-18x+13=25\)
\(-18x=12\)
\(x=-\frac{2}{3}\)