Cho tam giác DEF vuông tại D có DE = 30cm, EF=50cm. Kẻ đường cao DH.
a) tính độ dài đoạn EH, DH, DF
b) Tính góc E và góc F
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)
a: DF=căn 13^2-5^2=12cm
b: DE<DF
=>góc DFE<góc DEF
c: Xét ΔFDN vuông tại D và ΔFHN vuông tại H có
FN chung
góc DFN=góc HFN
=>ΔFDN=ΔFHN
=>ND=NH
Xét ΔNDK vuông tại D và ΔNHE vuông tại H có
ND=NH
góc DNK=góc HNE
=>ΔNDK=ΔNHE
=>KN=EN
a: DH=căn DE^2-EH^2=12cm
Xét ΔDEF vuông tại D có DH là đường cao
nên DE^2=EH*EF
=>EF=15^2/9=25cm
DF=căn 25^2-15^2=20cm
HF=25-9=16cm
b: C=15+20+25=40+20=60cm
S=1/2*15*20=10*15=150cm2
DM=EF/2=25/2=12,5cm
c: Xét ΔEDF có HK//DF
nên HK/DF=EH/EF
=>HK/20=9/25
=>HK=180/25=7,2cm
Theo định lí Pytago tam giác DEF vuông tại D
\(DF=\sqrt{EF^2-DE^2}=16cm\)
b, Xét tam giác EDF và tam giác DHF
^DFE _ chung
^EDF = ^DHF = 900
Vậy tam giác EDF ~ tam giác DHF (g.g)
\(\dfrac{EF}{DF}=\dfrac{DF}{HF}\Rightarrow DF^2=EF.HF\)
a: \(DF=\sqrt{20^2-12^2}=16\left(cm\right)\)
b: Xét ΔEDF vuông tại D và ΔDHF vuông tại H có
góc F chung
Do đó: ΔEDF\(\sim\)ΔDHF
a: \(\widehat{DFE}=30^0\)
b: Xét tứ giác DEFM có
DE//FM
DE=FM
Do đó: DEFM là hình bình hành
Suy ra: MD//EF
c: Xét tứ giác DHFK có
DH//FK
DK//HF
Do đó: DHFK là hình bình hành
Suy ra: HF=DK
Ta có: DK+KM=DM
FH+HE=FE
mà DM=FE
và DK=FH
nên KM=HE