K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

x2+1 > 1 => (x2+1)2 > 1

y4+5 > 5 => (y4+5)2 > 25

=> P = (x2+1)2+(y4+5)2 > 26

Vậy MinP=26 <=> x=y=0.

30 tháng 9 2016

Ta thấy hàm số này chỉ có cực đại. Và bị chặn 2 đầu. Vậy đầu chặn nào bé hơn chính là min

Vì 4 - 2x2 \(\ge0\)

\(-\sqrt{2}\le x\le\sqrt{2}\)

Tại x = \(\sqrt{2}\) thì hàm số = \(2\sqrt{2}\)

Tại x = -\(\sqrt{2}\) thì hàm số = - \(2\sqrt{2}\)

Vậy min là - \(2\sqrt{2}\)tại x = - \(\sqrt{2}\)

7 tháng 3 2016

Bài 1 :

=-5(x^2+4/5x+19/25)

=-5(x^2+2x.2/5+4/25+3/5)

=-5(x+2/5)^2-3

Vì (x+2/5)^2 lớn hơn hoặc bằng 0 =>-5(x+2/5)^2-3 nhỏ hơn hoặc bằng-3

Vậy Min là-3

5 tháng 7 2016

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\) (ĐKXĐ : \(x\ge1;y\ge2;z\ge3\))

\(\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

Vì \(\left(\sqrt{x-1}-1\right)^2\ge0;\left(\sqrt{y-2}-2\right)^2\ge0;\left(\sqrt{z-3}-3\right)^2\ge0\)

nên phương trình tương đương với : \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}}\)(TMĐK)

Vậy nghiệm của phương trình :  \(\left(x;y;z\right)=\left(2;6;12\right)\)

5 tháng 11 2017

a)Ta có: \(14x=12y\Rightarrow\frac{x}{12}=\frac{y}{14}=\frac{x-y}{12-14}=\frac{-10,2}{-2}=5,1\)

\(\Rightarrow x=5,1.12=61,2\)

     \(y=5,1.14=71,4\)

b) Ta có: \(\left(x-5\right)^{2016}-\left|y^2-4\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\y^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\y^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\y=\pm2\end{cases}}}\)

Vậy....

AH
Akai Haruma
Giáo viên
30 tháng 7 2023

Lời giải:
Theo bài ra ta có:

$3x=2y; 4y=5z$
$\Rightarrow \frac{x}{2}=\frac{y}{3}; \frac{y}{5}=\frac{z}{4}$

$\Rightarrow \frac{x}{10}=\frac{y}{15}=\frac{z}{12}$

Đặt $\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=k$

$\Rightarrow x=10k; y=15k; z=12k$
Khi đó:

$3x^2-y^2+z^2=876$

$\Rightarrow 3(10k)^2-(15k)^2+(12k)^2=876$

$\Rightarrow 219k^2=876$

$\Rightarrow k^2=4$
$\Rightarrow k=\pm 2$

Nếu $k=2$ thì $x=10k=20; y=15k=30; z=12k=24$

Nếu $k=-2$ thì $x=10k=-20; y=15k=-30; z=12k=-24$

28 tháng 9 2016

\(A^2=\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2\le\left(\sqrt{2}^2+1^2\right)\left(2x^2+4-2x^2\right)=12\)

\(\Rightarrow\left|A\right|\le\sqrt{12}=2\sqrt{3}\)

\(\Rightarrow-2\sqrt{3}\le A\le2\sqrt{3}\)

Từ đó tìm được Max Min

29 tháng 6 2017

\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=\left(\frac{1}{4}-\frac{3}{2}\right):\left(1-\frac{5}{4}\right)\)

\(\left(\frac{3x-2}{6}\right):\frac{1}{2}=\left(-\frac{5}{4}\right):\left(-\frac{1}{4}\right)\)

\(\left(\frac{3x-2}{6}\right):\frac{1}{2}=5\)

\(\left(\frac{3x-2}{6}\right)=\frac{5}{2}\)

           Áp dụng công thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\) ta đc:

                    \(\Rightarrow2\left(3x-2\right)=30\)

                    \(\Rightarrow\left(3x-2\right)=15\)

                    \(\Rightarrow3x=17\)

                         \(\Rightarrow x=\frac{17}{3}\)

29 tháng 6 2017

\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=\left(\frac{1}{4}-\frac{3}{2}\right):\left(\frac{1-5}{4}\right)\)

\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=\left(\frac{1}{4}-\frac{6}{4}\right):1\)

\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=-\frac{5}{4}:1\)

\(\left(\frac{x}{2}-\frac{1}{3}\right):\frac{1}{2}=-\frac{5}{4}\)

\(\frac{x}{2}-\frac{1}{3}=-\frac{5}{4}\times\frac{1}{2}\)

\(\frac{x}{2}-\frac{1}{3}=-\frac{5}{8}\)

\(\frac{x}{2}=-\frac{5}{8}+\frac{1}{3}\)

\(\frac{x}{2}=-\frac{7}{24}\)

\(x\times24=-14\)

\(x=-\frac{7}{12}\)