Tính A =\(^{1^2-2^2+3^2-4^2+5^2-6^2+...-2020^2+2021^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= 2021.2021-2020.(2021+1)
= 2021.(2020+1)-2020.(2021+1)
= (2021.2020)+2021-(2020.2021)-2020
= 1
b) B= (1+2-3-4)+(5+6-7-8)+(9+10-11-12)...........+(2017+2018-2019-2020)+2021
B= -4+(-4)+....................(-4)+2021
B= -4x505+2021
B= -2020 + 2021
B = 1
Lời giải:
a.
$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$
b.
$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$
$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$
$=0+0+....+0+2021=2021$
(1+3+5+7+...+2019+2021)
A=1−3+5−7+......−2019+2021−2023
A=(1−3)+(5−7)+....+(2021−2023)A=(1−3)+(5−7)+....+(2021−2023)
A=−2+(−2)+....+(−2)(506)A=−2+(−2)+....+(−2)(506cặp)
a=−2.506A=−2.506
A=−1012A=−1012
a)-1-2-3-4-5-6-....-80
=(-1)+(-2)+(-3)+(-4)+(-5)+(-6)+...+(-80)
Khoảng cách giữa các số:(-1)-(-2)=1
Tổng các số hạng:(-1)-(-80)+1=80 số
Tổng:[(-1)+(-80)].80:2= -3240
=>-1-2-3-4-5-6+......-80=-3240
b,1-2+3-4+5-6+......+2021-2022
=(1-2)+(3-4)+(5-6)+...+(2021-2022)
=(-1)+(-1)+(-1)+...+(-1)
Tổng số cặp là:
(2022-1+1):2=1011 cặp
-1.1011=-1011
=>1-2+3-4+5-6+......+2021-2022= -1011
c, Đề bài sai
d,-4-8-12-16-.......-2020
=-4+(-8)+(-12)+(-16)+...+(-2020)
Khoảng cách giữa các số:-4-(-8)=4
Tổng các số hạng:[-4-(-2020]:4+1=505 số
Tổng:[-4+(-2020)].505:2=-511060
=>-4-8-12-16-.......-2020=-511060
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
A = 12 - 22 + 32 - 42 + 52 - 62 + ... - 20202 + 20212
= ( 20212 - 20202 ) + ... + ( 52 - 42 ) + ( 32 - 22 ) + 12
= ( 2021 - 2020 )( 2021 + 2020 ) + ... + ( 5 - 4 )( 5 + 4 ) + ( 3 - 2 )( 3 + 2 ) + 1
= 4041 + ... + 9 + 5 + 1
= \(\frac{\left(4041+1\right)\left[\left(4041-1\right)\div4+1\right]}{2}\)
= 2 043 231
\(A=1+\left(-2^2+3^2\right)+...+\left(-2020^2+2021^2\right)\)
\(\Leftrightarrow A=1+\left(3-2\right).\left(3+2\right)+...\left(2021-2020\right).\left(2021+2020\right)\)
\(\Leftrightarrow A=1+5+9+13+..+4041\)
\(\Leftrightarrow A=1+\left(1+4.1\right)+\left(1+4.2\right)+...+\left(1+4.1010\right)\)
\(\Leftrightarrow A=1010+4\left(1+2+3+..+1010\right)\)
\(\Leftrightarrow A=1010+\frac{4.1010.1011}{2}=1010+1010.2022=1010.2023\)