K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

x2 - 2xy + 6y2 - 8x - 12y + 36 = 0

⇔ ( x2 - 2xy + y2 - 8x + 8y + 16 ) + ( 5y2 - 20y + 20 ) = 0

⇔ [ ( x2 - 2xy + y2 ) - ( 8x - 8y ) + 16 ] + 5( y2 - 4y + 4 ) = 0

⇔ [ ( x - y )2 - 2.( x - y ).4 + 42 ] + 5( y - 2 )2 = 0

⇔ ( x - y - 4 )2 + 5( y - 2 )2 = 0

Ta có : \(\hept{\begin{cases}\left(x-y-4\right)^2\ge0\forall x,y\\5\left(y-2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y-4\right)^2+5\left(y-2\right)^2\ge0\forall x,y\)

Dấu "=" xảy ra ⇔ \(\hept{\begin{cases}x-y-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=2\end{cases}}\)

Vậy x = 6 ; y = 2

5 tháng 11 2019

\(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-2z\left(x-y\right)+z+\left(x^2-8x+16\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2z\left(x-y\right)+z^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\left(x-y-z\right)^2+\left(x-4\right)^2+\left(y-3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-z=0\\x-4=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}z=1\\x=4\\y=3\end{cases}}\)

Vậy \(x=4\)\(y=3\)\(z=1\)

28 tháng 10 2020

Ta có: \(2x^2+2y^2+z^2+25-6y-2xy-8x+2z\left(y-x\right)=0\)

\(\Leftrightarrow\left(x^2-8x+16\right)+\left(y^2-6y+9\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)z+z^2=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left[\left(x-y\right)^2-2\left(x-y\right)z+z^2\right]=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(y-3\right)^2+\left(x-y-z\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-4\right)^2=0\\\left(y-3\right)^2=0\\\left(x-y-z\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

2 tháng 11 2022

Chỗ (x²-8x+16) 

16 là ở đâu ra vậy bạn

Chỗ (y²-6y+9 ) 

9 là ở đâu ra nx v

7 tháng 8 2017

1.

\(x^2\)+\(y^2\)+2y-6x+10=0

=> \(x^2\)-6x+9 +\(y^2\)+2y+1=0

=> (x-3)\(^2\)+(y+1)\(^2\)=0

pt vô nghiệm

7 tháng 8 2017

4.

=> \(x^2\)+8x+16+(3y)\(^2\)-2.3.2y+4=0

=> (x+4)\(^2\)+(3y-2)\(^2\)=0

pt vô nghiệm


29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

15 tháng 7 2018

.

giúp mk đi. Mk đag cần gấp

3 tháng 6 2017

a) \(x^2-8x+y^2+6y+25=0\)

\(\left(x-8\right)x+y\left(y+6\right)+25=0\)

\(x^2+y^2+6y+25=8x\)

\(\Rightarrow x=4,y=-3\)

3 tháng 6 2017

b )​4x2-4x+9y2 -12y +5

<=> [( 2x )2​ - 4x + 1 ] [ (3y) 2 ​- 12y + 4 )] = 0

<=> ( 2x - 1 )2 ​ + ( 3y - 2 )2​ =0   ( Vì (2x -1)2 ​>=0 , ( 3y - 2 )2 >= 0 )

<=> 2x - 1 = 0 và 3y -2 = 0

<=> x = 1/2     và y = 2/3