K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 11 2020

\(x\left(x+1\right)-x\left(x+3\right)=0\Leftrightarrow x^2+x-x^2-3x=0\)

\(\Leftrightarrow-2x=0\Leftrightarrow x=0\)

Vậy x=0 

7 tháng 11 2020

\(x\left(x+1\right)-x\left(x+3\right)=0\)   

\(x\left[\left(x+1\right)-\left(x+3\right)\right]=0\)   

\(x\left(x+1-x-3\right)=0\)   

\(x\cdot\left(-2\right)=0\)   

\(x=0:\left(-2\right)\)   

\(x=0\)

12 tháng 8 2023

\(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow x-3=\left(x-3\right)^2\)

\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

___________

\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

loading...  loading...  

18 tháng 4 2022

\(=>x=2010:\left(2+3+4\right)=2010:9=\dfrac{670}{3}\)

18 tháng 4 2022

` x : 1 / 2 + x : 1 / 3 + x : 1 / 4 + x = 2010`

`x . 2 + x . 3 + x . 4 + x = 2010`

`x ( 2 + 3 + 4 + 1 ) = 2010`

`x . 10 = 2010`

`x = 2010 : 10`

`x = 201`

Vậy ` x= 201`

30 tháng 1 2022

\(x=\dfrac{7}{25}+\dfrac{-1}{5}=\dfrac{7}{25}-\dfrac{1}{5}=\dfrac{2}{25}.\\ x=\dfrac{5}{11}+\dfrac{4}{-9}=\dfrac{5}{11}-\dfrac{4}{9}=\dfrac{1}{99}.\\ \dfrac{5}{9}-\dfrac{x}{-1}=\dfrac{-1}{3}\Leftrightarrow\dfrac{5}{9}+x=-\dfrac{1}{3}.\Leftrightarrow x=-\dfrac{8}{9}.\)

30 tháng 1 2022

\(x=\dfrac{7}{25}+-\dfrac{1}{5}=>\dfrac{7}{25}+-\dfrac{5}{25}=>x=\dfrac{2}{25}\)

\(x=\dfrac{5}{11}+\dfrac{4}{-9}=>\dfrac{-45}{-99}+\dfrac{44}{-99}=>x=\dfrac{-1}{-99}=\dfrac{1}{99}\)

\(\dfrac{5}{9}-\dfrac{x}{-1}=-\dfrac{1}{3}=>-\dfrac{1}{3}-\dfrac{5}{9}=>\dfrac{x}{-1}=-\dfrac{8}{9}=>x=-\dfrac{8}{9}\)

Ta có: \(x+y+z=0\)

nên \(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Ta có: \(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)

\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}\)

\(=\dfrac{-z}{y}\cdot\dfrac{-x}{z}\cdot\dfrac{-y}{x}\)

\(=\dfrac{-\left(x\cdot y\cdot z\right)}{x\cdot y\cdot z}=-1\)

24 tháng 12 2016

ra bai ngu qua

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

16 tháng 2 2021

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)

  \(3xy-2y+6x=0\)

\(\Leftrightarrow3xy+6x-2y-4+4=0\)

\(\Leftrightarrow3x\left(y+2\right)-2\left(y+2\right)+4=0\)

\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=-4\)

Vì x,y là các số nguyên nên y+2 và 3x-2 cũng là các số nguyên

\(\Leftrightarrow\left(y+2\right)\left(3x-2\right)=1.\left(-4\right)=\left(-1\right).4\)

Ta có bảng sau: 

  y+2      -1     4       -4        1
    y       -3      2       -6        -1
 3x-2        4      -1        1        -4
   3x        6        1        3        -2
   x        2    \(\dfrac{1}{3}\)(loại)        1  \(\dfrac{-2}{3}\)(loại)

 

TH1: \(y=-3\) ;\(x=2\) thì \(x+y=2+\left(-3\right)=-1\)

TH2: \(y=-6;x=1\) thì \(x+y=-6+1=-5\) 

Vậy \(x+y=-1\) khi \(y=-3\) và \(x=2\) 

       \(x+y=-5\) khi \(y=-6;x=1\)

 

Giải:

Ta có:

\(3xy-2y+6x=0\) 

\(\Rightarrow3x.\left(y+2\right)-2y-4=-4\) 

\(\Rightarrow3x.\left(y+2\right)-2.\left(y+2\right)=-4\) 

\(\Rightarrow\left(3x-2\right).\left(y+2\right)=-4\) 

\(\Rightarrow\left(3x-2\right)\) và \(\left(y+2\right)\inƯ\left(-4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

Ta có bảng giá trị:

3x-2-4-2-1124
y+2124-4-2-1
x\(\dfrac{-2}{3}\) (loại)0 (t/m)\(\dfrac{1}{3}\) (loại)1 (t/m)\(\dfrac{4}{3}\) (loại)2 (t/m)
y-102-6-4-3

Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;-6\right);\left(2;-3\right)\right\}\) 

\(\left(+\right)TH1:x+y=0+0=0\) 

\(\left(+\right)TH2:x+y=1+-6=-5\) 

\(\left(+\right)TH3:x+y=2+-3=-1\) 

Chúc bạn học tốt!