K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

a, theo định lý pitago tính đc BC

sau đó xét tam giác đồng dạng ABH và CBA là tìm đc AH

hok tốt

15 tháng 5 2020

Theo định lý py ta go ta có

BC2=AC2+AB2 Hay BC2=289 => BC=17

15 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

hay ΔABC vuông tại A

a: ΔAHB vuông tại H 

mà HN là đường cao

nên AN*AB=AH^2

ΔAHC vuông tại H

mà HM là đường cao

nên AM*AC=AH^2

=>AN*AB=AM*AC

=>AN/AC=AM/AB

=>ΔANM đồng dạng với ΔACB

b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(CH=\sqrt{13^2-12^2}=5\left(cm\right)\)

=>BC=14cm

b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

1: BA=căn 10^2-6^2=8cm

sin ABC=AC/BC=3/5

=>góc ABC=37 độ

AH=6*8/10=4,8cm

BH=BA^2/BC=8^2/10=6,4cm

2: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

3: AI*AB=AK*AC

=>AI/AC=AK/AB

Xét ΔAIK và ΔACB có

AI/AC=AK/AB 

góc IAK chung

=>ΔAIK đồng dạng với ΔACB

8 tháng 5 2018

Tam giác AHN đồng dạng với tam giác ACH ( tự chứng minh )

\(\Rightarrow\frac{AH}{AC}=\frac{AN}{AH}\Rightarrow AH^2=AN.AC\left(1\right)\)

 tam giác AHB đồng dạng với tam giác AMH ( Tự chứng minh )

\(\Rightarrow\frac{AH}{AM}=\frac{AB}{AH}\Rightarrow AH^2=AB.AM\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra AB.AM = AN.AC

\(\Rightarrow\frac{AC}{AB}=\frac{AM}{AN}\)

Xét tam giác AMN và tam giác ACB có:

\(\widehat{MAN}\)chung 

\(\frac{AM}{AN}=\frac{AC}{AB}\left(cmt\right)\)

Suy ra tam giác AMN đồng dạng với tam giác ACB ( c-g-c )

b) Áp dụng định lý PITAGO tính ra BH và CH 

rồi tiếp tục tính tiếp BC 

8 tháng 5 2018

- bạn ơi

- Chứng minh ngay luôn hộ mình để mình còn gửi bài cho cô nè. mình không có time đâu bạn

1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc ACB chung

Do đó: ΔABC\(\sim\)ΔHAC

2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

=>BM/3=CM/4

Áp dụng tính chất của dãy tr số bằng nhau, ta được:

\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)

Do đó: BM=75/7(cm); CM=100/7(cm)

3 tháng 12 2021

\(a,AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\left(cm\right)\\ \sin B=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}=\sin60^0\\ \Rightarrow\widehat{B}=60^0\\ \Rightarrow\widehat{C}=30^0\)

3 tháng 12 2021

Học lại Toán lớp 7 đi.