K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

Chia thành nhóm:

Nhóm 1: 3 số

\(\sqrt{1}\leq \sqrt{1},\sqrt{2},\sqrt{3}<\sqrt{4}\)\(\Leftrightarrow 1\leq \sqrt{1},\sqrt{2},\sqrt{3}< 2\)

Do đó, \([\sqrt{1}]=[\sqrt{2}]=[\sqrt{3}]=1\)

Nhóm 2: 5 số\(\sqrt{4} \leq \sqrt{4},\sqrt{5},....,\sqrt{8}<\sqrt{9}\Leftrightarrow 2\leq \sqrt{4},\sqrt{5},...,\sqrt{8}< 3\)

\(\Rightarrow [\sqrt{4}]=[\sqrt{5}]=...=[\sqrt{8}]=2\)

Nhóm 3: 7 số

\(3\leq \sqrt{9}.\sqrt{10},...,\sqrt{15}< \sqrt{16}=4\)

\(\Rightarrow [\sqrt{9}],[\sqrt{10}],....,[\sqrt{15}]=3\)

Nhóm 4: 9 số

\(4\leq \sqrt{16},\sqrt{17},...,\sqrt{24}< \sqrt{25}=5\)

\(\Rightarrow [\sqrt{16}]=[\sqrt{17}]=...=[\sqrt{24}]=4\)

Nhóm 5: 11 số

\(5\leq \sqrt{25},\sqrt{26},....\sqrt{35}<\sqrt{36}=6\)

\(\Rightarrow [\sqrt{25}]=[\sqrt{26}]=...=[\sqrt{35}]=5\)

Do đó:

\([\sqrt{1}]+[\sqrt{2}]+....+[\sqrt{35}]=3.1+5.2+7.3+9.4+11.5=125\)

25 tháng 2 2018

1.nhan xet

voi a thuoc Z

\(\left[\sqrt{a^2}\right]=\left[\sqrt{a^2+1}\right]=...=\left[\sqrt{a^2+2a}\right]\)

do do\(\left[\sqrt{a^2}\right]+\left[\sqrt{a^2+1}\right]+...+\left[\sqrt{a^2+2a}\right]=\frac{2a\left(2a+1\right)}{2}=a\left(2a+1\right)\)

thay a=1 cho den 10 

tu tinh ra 825

11 tháng 6 2017

đặt \(a=5+2\sqrt{6}\).ta sẽ chứng minh với dạng tổng quát \(\left[a^n\right]\)là 1 số tự nhiên lẻ.

ta có: \(a^n=\left(5+2\sqrt{6}\right)^n=x+y\sqrt{6}\)(x,y là các số tự nhiên) (*)

đặt \(b=5-2\sqrt{6}\Rightarrow b^n=x-y\sqrt{6}\)

\(\Rightarrow a^n+b^n=2x\)

mà \(0< b=5-2\sqrt{6}< 1\)

\(\Rightarrow0< b^n< 1\)

\(\Rightarrow2x-1< a^n=2x-b^n< 2x\)

nên \(\left[a^n\right]=2x-1\)lẻ vì x nguyên.

p/s:(*) : thử \(\left(5+2\sqrt{6}\right)^2,\left(5+2\sqrt{6}\right)^3\)đều có dạng \(A+B\sqrt{6}\)

11 tháng 6 2017

thank nhìu nha :P

18 tháng 8 2016

Đặt \(A=\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]+\left[\sqrt{4}\right]+...+\left[\sqrt{212041}\right]\)

\(=\left(\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+\left[\sqrt{3}\right]\right)+\left(\left[\sqrt{4}\right]+...+\left[\sqrt{8}\right]\right)+\left(\left[\sqrt{9}\right]+...+\left[\sqrt{15}\right]\right)+...+\left(\left[\sqrt{210681}\right]+...+\left[\sqrt{211599}\right]\right)+\left(\left[\sqrt{211600}\right]+\left[\sqrt{212041}\right]\right)\)

Theo cách chia nhóm như trên, nhóm 1 có 3 số, nhóm 2 có 5 số, nhóm 3 có 7 số, nhóm 4 có 9 số, ..., nhóm 459 có 919 số, nhóm cuối cùng có 442 số. Các số thuộc nhóm 1 bằng 1, các số thuộc nhóm 2 bằng 2, các số thuộc nhóm 3 bằng 3, ..., các số thuộc nhóm 459 bằng 459, Các số thuộc nhóm cuối cùng bằng 460.

Do đó \(A=1.3+2.5+3.7+...+459.919+460.442\)

            \(=1\left(1.2+1\right)+2.\left(2.2+1\right)+3.\left(3.2+1\right)+...+459.\left(459.2+1\right)+203320\)

            \(=\left(2.1^2+1\right)+\left(2.2^2+1\right)+\left(2.3^2+1\right)+...+\left(2.459^2+1\right)+203320\)

            \(=2.\left(1^2+2^2+3^2+...+459^2\right)+\left(1+2+3+...+459\right)+203320\)

            \(=2.\frac{1}{6}.459.460.919+105570+203320=64988110\)

18 tháng 8 2016

123hehe321

6 tháng 12 2019

\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=3.1+5.2+7.3+9.4+11.5\)

\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=3+10+21+36+55\)

\(\Rightarrow\left[\sqrt{1}\right]+\left[\sqrt{2}\right]+...+\left[\sqrt{35}\right]=125.\)

Chúc bạn học tốt!

6 tháng 11 2016

Ta có từ n3 + 1 đến (n + 1)3 - 1 có

(n + 1)3 - 1 - n3 - 1 + 1 = 3n2 + 3n số có phần nguyên bằng n

Áp dụng vào cái ban đầu ta có

\(=\frac{3.1^2+3.1}{1}+\frac{3.2^2+3.2}{2}+...+\frac{3.2011^2+3.2011}{2011}\)

= 3.1 + 3 + 3.2 + 3 + ...+ 3.2011 + 3

= 3.2011 + 3(1 + 2 +...+ 2011)

= 6075231

5 tháng 11 2016

to thấy bài dễ mà