K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=cos^258^0\cdot sin45+sin^245^0+sin45\)

\(=sin45\left(cos^258^0+sin^245^0\right)\)

\(=\dfrac{\sqrt{2}}{2}\left(cos^258^0+\dfrac{1}{2}\right)\)

\(=\dfrac{\sqrt{2}}{2}\cdot cos^258^0+\dfrac{\sqrt{2}}{4}\)

6 tháng 9 2021

cos (4x + 450) = - sinx

⇔ cos (4x + 450) = cos (x + 900)

⇔ \(\left[{}\begin{matrix}4x+45^0=x+90^0+k.360^0\\4x+45^0=-x-90^0+k.360^0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x=15^0+k.120^0\\x=-27^0+k.72^0\end{matrix}\right.\)

14 tháng 10 2023

 Sửa lại đề bài là \(cos\left(15^o+2\alpha\right)\) (chứ không phải là \(cos^2\left(15^o+2\alpha\right)\) nhé)

 Ta có \(VT=sin^2\left(45^o+\alpha\right)-sin^2\left(30^o-\alpha\right)-sin15^o.cos^2\left(15^o+2\alpha\right)\)

\(=\left[sin\left(45^o+\alpha\right)+sin\left(30^o-\alpha\right)\right]\left[sin\left(45^o+\alpha\right)-sin\left(30^o-\alpha\right)\right]-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=2sin\left(\dfrac{75^o}{2}\right)cos\left(\dfrac{2\alpha+15^o}{2}\right).2cos\left(\dfrac{75^o}{2}\right)sin\left(\dfrac{2\alpha+15^o}{2}\right)-sin15^ocos^2\left(15^o+2\alpha\right)\)

\(=sin75^o.sin\left(2\alpha+15^o\right)-sin15^o.cos^2\left(2\alpha+15^o\right)\)

\(=sin\left(2\alpha+15^o-15^o\right)\) (dùng \(sin\left(\alpha-\beta\right)=sin\alpha.cos\beta-sin\beta.cos\alpha\))

\(=sin2\alpha=VP\)

Vậy đẳng thức được chứng minh.

14 tháng 10 2023

Mấy chỗ kia bạn sửa hết \(cos^2\left(15^o+2\alpha\right)\) thành \(cos\left(15^o+2\alpha\right)\) nhé.

NV
17 tháng 9 2021

\(\Leftrightarrow sin\left(3x+45^0\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+45^0=-x+k360^0\\3x+45^0=180^0+x+k360^0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=45^0+k360^0\\2x=135^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=22,5^0+k90^0\\x=67,5^0+k180^0\end{matrix}\right.\) (\(k\in Z\))

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

16 tháng 10 2023

a: \(sinx+cosx=\sqrt{2}\)

=>\(\left(sinx+cosx\right)^2=2\)

=>\(1+2\cdot sinx\cdot cosx=2\)

=>\(2\cdot sinx\cdot cosx=1\)

=>\(sinx\cdot cosx=\dfrac{1}{2}\)

b: \(\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4\cdot sinx\cdot cosx\)

\(=2-4\cdot\dfrac{1}{2}=2-2=0\)

=>\(sinx-cosx=0\)

c: \(sinx-cosx=0\)

\(sinx+cosx=\sqrt{2}\)

Do đó: \(sinx=cosx=\dfrac{\sqrt{2}}{2}\)