K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

vào chtt

tick mk nhìu nha mk sắp off rùi

 

24 tháng 12 2015

S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)

Vậy không tồn tại số chính phương S

20 tháng 6 2016

\(S=\overline{abc}+\overline{bca}+\overline{cab}\)

\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111a+111b+111c\)

\(=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)

vì : \(0< a,b,c\le9;\left(a;b;c\in N\right)\)

\(\Rightarrow a+b+c\le27\)

\(\Rightarrow a+b+c⋮̸37̸\)

mà \(\left(3,37\right)=1\)

\(\Rightarrow3\left(a+b+c\right)⋮̸37̸\)

do đó S không là số chính phương

20 tháng 6 2016

S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 

Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 

Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 

Vậy không tồn tại số chính phương S

21 tháng 7 2015

ta có : abc + bca + cab = 111a + 111b + 111c 

                                         = 111 . (a+b+c)

                                         = 3. 37 . (a+b+c) 

Để S là số chính phương thì a+b+c = 3. 37 . k^2. 

Mà a+ b+ c < hoặc = 27 nên : 

                      Vay tog S ko phai la so chih phuong 

14 tháng 5 2017

S = abc + bca + cab

S = 100a+10b+c+100b+10c+a+100c+10a+b

S=111a+111b+111c

S=111 x (a+b+c)

=> S không phải số chính phương vì a+b+c là các số tự nhiên có 1 chữ số nên a+b+c <111

1 tháng 3 2016

đây là toán 6,dễ, tự nghĩ đi

30 tháng 1 2018
Cho x>y>0.Chứng Minh Rằng x^2+y khong phai là số chính phương
6 tháng 1 2016

 

S=abc+bca+cab=ax100+bx10+c+bx100+cx10+ax1+cx100+ax10+b=ax111+bx111+

Cx111=(a+b+c)x111

Vì số chính phương có dạng a^2 mà a+b+c có tổng nhiều nhất là 27 nên suy ra S không phải số chính phương(điều cần chứng minh)

1 tháng 2 2016

 

 S = abc   + bca + cab

=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b

=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)

=a.111+b.111+b.111

=(a+b+c).111

=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}

=> S thuộc {111;222;333;444;555;666;777;888;999}

nhé 

1 tháng 2 2016

 

 S = abc   + bca + cab

=a.100+b.10+c+b.100+c.10+a+c.100+a.10+b

=a.(100+10+1)+b.(100+10+1)+c.(100+10+1)

=a.111+b.111+b.111

=(a+b+c).111

=> (a+b+c) thuộc {1;2;3;4;5;6;7;8;9}

=> S thuộc {111;222;333;444;555;666;777;888;999}

 

nhé  s4.jpgHoàng Thu Hà

S=abc+bca+cab

=100a+10b+c+100b+10c+a+100c+10a+b

=111a+111b+111c

=111(a+b+c) 

giả sử S là số chính phương

=>a+b+c=111.k2          (k khác 0)

mà a+b+c<28=>S không phải là số chính phương

vậy không có S

6 tháng 4 2016

 S=abc+bca+cab= 
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)= 
1011*(a+b+c) =3*337*(a+b+c) 
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*) 
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*) 
Vậy không tồn tại số chính phương S