tính max của biểu thức A=1/(1+a^2+b^2)+1/(1+b^2+c^2)+1/(1+c^2+a^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ch0 a>0 và n là 1 số tự nhiên
Chứng minh rằng an+1an−2⩾n2(a+1a−2)
Lời giải:
Bất đẳng thức tương đương với (an−1+an−2+...+a+1)≥n2an−1 (hiển nhiên theo AM-GM)
Cách khác:
Do tính đối xứng giữa a và 1a nên ta có thể giả sử a ≥ 1. đặt √a =x ≥ 1.bdt ⇔ x2n+1x2n−2≥n2(x2+1x2−2)⇔(xn−1xn)2≥n2(x−1x)2⇔x^{n}-\frac{1}{x^{n}}\geq n(x-\frac{1}{x})$①.
Với x=1 thì ① đúng
Với x>1 thì ① ⇔xn−1+xn−3...+1xn−3+1xn−1≥n (đúng vì theo bđt AM-GM).
Dấu bằng xảy ra khi x=1 ⇔a=1
bài này được liệt vào câu hỏi hay nhưng mk cũng chưa nghĩ ra
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
Áp dụng bất đẳng thức Côsy cho các cặp số không âm (a^2,1);(b^2,1),(c^2,1) ta có: a^2 +1 >= 2a ; b^2 + 1 >= 2b ; c^2 + 1 >= 2c
Do đó: \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{3}{2}\)
Đẳng thức xảy ra <=> a^2 = 1 ; b^2 = 1 ; c^2 = 1 <=> \(\hept{\begin{cases}a=\pm1\\b=\pm1\\c=\pm1\end{cases}}\)
Ta có : \(a^2+b^2+c^2\ge ab+ac+\)\(bc\)(1)
vì , ta có
(1) \(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\)\(\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)\)\(+\left(a^2-2ac+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)(luôn đúng) => bất đẳng thức
Ta có :
\(a^2+b^2+c^2-2abc\ge ab+bc+ac-2abc\)
<=>\(a^2+b^2+c^2+2abc-3abc\ge ab+bc+ac-2abc\)
<=> \(1-3abc\ge ab+bc+ac-2abc\)
=> MAX P=1 <=> \(\hept{\begin{cases}a=0\\b=c=1\end{cases}}\)hoặc \(\hept{\begin{cases}b=0\\a=c=1\end{cases}}\)
hoặc \(\hept{\begin{cases}c=0\\a=b=1\end{cases}}\)
Sai thì bảo mình nhé
xin lỗi Dòng thứ 8 và 9 phải là
\(a^2+b^2+c^2+2abc-4abc\ge ab+ac+bc-2abc\)
\(\Leftrightarrow1-4abc\ge ab+ac+bc-2abc\)
Dự đoán khi \(a=b=c=\frac{3}{2}\) ta tính được \(P=\sqrt{5}\)
Ta sẽ chứng minh nó là GTLN của \(P\)
Thật vậy, theo BĐT Cauchy-Schwarz ta có:
\(\sum\frac{\sqrt{a^2-1}}{a}=\sum\sqrt{1-\frac{1}{a^2}}\leq\sqrt{(1+1+1)\sum\left(1-\frac{1}{a^2}\right)}=\sqrt{3\sum\left(1-\frac{1}{a^2}\right)}\)
Vậy ta quay ra chứng minh \(3\sum(1-\frac{1}{a^2})\leq5 \)
Hay \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq\frac{4}{3}\). Đặt \(\left\{{}\begin{matrix}a+b+c=3u\\ab+ac+bc=3v^2\\abc=w^3\end{matrix}\right.\)
Vì vậy điều kiện không phụ thuộc vào \(v^2\) và ta cần chứng minh \(9v^4-6uw^3\geq \frac{4}{3}w^6\)
Nó đủ để nói lên BĐT kia cho một GTNN của \(v^2\)
Ta đã biết \(a,b,c\) là các nghiệm dương của phương trình
\((x-a)(x-b)(x-c)=0\)
\(\Leftrightarrow x^3-3ux^2+3v^2x-w^3=0\)
\(\Leftrightarrow 3v^2x=-x^3+3ux^2+w^3\)
Do vậy, trên đường \(y=3v^2x\) và đồ thị của \(y=-x^3+3ux^2+w^3\) có \(3\) điểm chung và \(v^2\) nhận được GTNN
Khi đường \(y=3v^2x\) là một đường tiếp tuyến với đồ thị \(y=-x^3+3ux^2+w^3\)
Nó xảy ra trường hợp cho hai biến số bằng nhau
Tức là, nó đủ để chứng minh BĐT cuối cho \(b=a\) và điều kiện cho \(c=\frac{27+36a}{32a^2-18}\)
Như vậy, ta cần chứng minh
\(a^4+2a^2\left(\frac{27+36a}{32a^2-18}\right)^2\geq\frac{4}{3}a^4\left(\frac{27+36a}{32a^2-18}\right)^2\)
Hay \(a^2(2a-3)^2(8a^2+12a+9)\geq0\). Đúng !
mấy bài BĐT của bn giúp mình luyện nhiều thứ quá: luyện tay, luyện gõ, luyện não,tính kiên trì....