Bài 1:a/ Cho hình vuông ABCD có cạnh 5cm. Chứng minh rằng: A, B, C, D cùng nằm trên một đường tròn, tính bán kính.b/ Cho hình chữ nhật ABDE có AB = 8, BD = 6. Chứng minh rằng: A, B, D, E cùng nằm trên một đường tròn, tính bán kính.Bài 2: Cho tam giác ABC, vẽ đường tròn tâm O đường kính BC. (O) cắt AB, AC lần lượt tại D và E, BE giao CD tại K.a/ CMR: CD ^ AB, BE ^ AC.b/ CMR: AK ^ BC.Bài 3: Cho tam giác ABC vuông ở B,...
Đọc tiếp
Bài 1:
a/ Cho hình vuông ABCD có cạnh 5cm. Chứng minh rằng: A, B, C, D cùng nằm trên một đường tròn, tính bán kính.
b/ Cho hình chữ nhật ABDE có AB = 8, BD = 6. Chứng minh rằng: A, B, D, E cùng nằm trên một đường tròn, tính bán kính.
Bài 2: Cho tam giác ABC, vẽ đường tròn tâm O đường kính BC. (O) cắt AB, AC lần lượt tại D và E, BE giao CD tại K.
a/ CMR: CD ^ AB, BE ^ AC.
b/ CMR: AK ^ BC.
Bài 3: Cho tam giác ABC vuông ở B, AB = 8cm, BC = 6cm. Gọi D là điểm đối xứng của điểm B qua AC.
a. CMR: 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.
b. Vẽ đường kính BE của đường tròn ngoại tiếp tam giác ABC. Chứng minh tứ giác ACDE là hinh thang cân.
1/ Gọi O là giao hai đường chéo AC và BD
=> OA=OC; OB=OD (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
Ta có AC=BD (trong HCN hai đường chéo băng nhau)
=> OA=OC=OB=OD => 4 điểm A;B;C;D cùng nằm trên một đường tròn tâm O là giao của hai đường chéo HCN
2/
a/
Ta có tam giác ABC vuông tại A => BC là cạnh huyền, gọi O là trung điểm cạnh huyền => AO là trung tuyến thuộc cạnh huyền
=> OA=OB=OC=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền) => O là tâm đường tròn ngoại tiếp tg ABC
b/
Ta có tg ABC có BC là đường kính đường tròn ngoại tiếp tg ABC => OA=OB=OC
+ Xét tg AOB có OA=OB => tg AOB cân tạo O => ^BAO = ^AOB (1)
+ Xét tg AOC có OA=OC => tg AOC cân tại O => ^CAO = ^AOC (2)
Xét tg ABC có
^ABC+^ABO+^ACO=180 (tổng các góc trong của 1 tg =180 độ)
=> (^BAO+^CAO)+^ABO+^ACO=180 (3)
Từ (1) (2) và (3) => ^ABC=^BAO+^CAO=^ABO+^ACO=180:2=90
=> tg ABC vuông tại A