K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

English is not math, Okay!

17 tháng 10 2016

NO. OK?

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE(1)

Ta có: D và F đối xứng nhau qua AC

nên AD=AF(2)

Từ (1) và (2) suy ra AE=AF

b: Khi E đối xứng với F qua A thì A là trung điểm của EF

Xét ΔEDF có 

DA là đườg trung tuyến

DA=EF/2

Do đó: ΔEDF vuông tại E

=>\(\widehat{BAC}=90^0\)

2 tháng 11 2015

A B C D E F I K

Gọi I,K lần lượt là giao điểm của AB với DE, AC với DF

a) E đối xứng D qua AB \(\Rightarrow\) IE = ID; góc I = 90 độ

Xét tam giác AED có AI là đường trung tuyến (IE = ID) còn là đường cao (góc I = 90 độ)

nên tam giác AED cân tại A \(\Rightarrow\) AE = AD (1)

F đối xứng D qua AC \(\Rightarrow\) KF = KD; góc K = 90 độ

Xét tam giác AFD có AK là đường trung tuyến (KF = KD) còn là đường cao (góc K = 90 độ)

nên tam giác AFD cân tại A \(\Rightarrow\) AF = AD (2)

Từ (1) và (2) \(\Rightarrow\) AE = AF

b) không biết làm

a) Xét ΔABC có 

M là trung điểm của BC(gt)

F là trung điểm của AC(gt)

Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

Suy ra: MF//AB và \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên MF//AE và MF=AE

Xét tứ giác AEMF có 

MF//AE(cmt)

MF=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Hình bình hành AEMF trở thành hình chữ nhật khi \(\widehat{BAC}=90^0\)

c) Xét tứ giác AMCK có 

F là trung điểm của đường chéo AC

F là trung điểm của đường chéo MK

Do đó: AMCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

17 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Vì E đối xứng với D qua AB

⇒ AB là đường trung trực của đoạn thẳng DE

⇒ AD = AE (tính chất đường trung trực)

Nên ∆ ADE cân tại A

Suy ra: AB là đường phân giác của ∠ (DAE) ⇒ ∠ A 1 ∠ A 2

* Vì F đối xứng với D qua AC

⇒ AC là đường trung trực của đoạn thẳng DF

⇒ AD = AF (tính chất đường trung trực)

Nên  ∆ ADF cân tại A

Suy ra: AC là phân giác của  ∠ (DAF)

⇒  ∠ A 3 =  ∠ A 4

∠ (EAF) =  ∠ EAD) +  ∠ (DAF) = ∠ A 1 ∠ A 2 ∠ A 3 ∠ A 4 = 2( ∠ A 1 ∠ A 3 ) = 2 . 90 0 = 180 0

⇒ E, A, F thẳng hàng có AE = AF = AD

 

Nên A là trung điểm của EF hay điểm E đối xứng với điểm F qua điểm A.

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath