\(Cho:x^2+y^2=1+xy\)
\(CMR:\frac{1}{9}\le x^4+y^4-x^2y^2\le\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=4\)
=> \(\orbr{\begin{cases}x+y+z=2\\x+y+z=-2\end{cases}}\)
+ \(x+y+z=2\)
Thay vào Pt (1)
=> \(xy+z\left(2-z\right)=1\)
=> \(xy=\left(z-1\right)^2\)=> \(x,y,z\ge0\)( do \(x+y+z=2>0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{2-z}{2}\right)^2\)
=> \(z-1\le\frac{2-z}{2}\)=> \(z\le\frac{4}{3}\)
Hoàn toàn TT => \(x,y,z\le\frac{4}{3}\)
+ \(x+y+z=-2\)
=> \(xy+z\left(-2-z\right)=1\)
=> \(xy=\left(z+1\right)^2\)=> \(x,y,z\le0\)( do \(x+y+z=-2< 0\))
Mà \(xy\le\left(\frac{x+y}{2}\right)^2=\left(\frac{-2-z}{2}\right)^2\)
=> \(\left(z+1\right)^2\le\left(\frac{z+2}{2}\right)^2\)
=> \(z+1\ge\frac{-z-2}{2}\)=> \(z\ge-\frac{4}{3}\)
TT => \(x,y,z\ge-\frac{4}{3}\)
Vậy \(-\frac{4}{3}\le x,y,z\le\frac{4}{3}\)
v~~ ko thằng admin :(( t làm cái bài này mất gần 30 phút mà bây giờ nó éo hiện câu trả lời của tao ???? hận quá đi
bài này easy lắm bạn ơi :((
áp dụng BDT (Am-ag) mẫu ta có
\(\left(x^2+y^2\right)\ge2\sqrt{x^2y^2}=2xy\) rồi thay vào
suy ra \(\frac{1}{x^2+y^2+2}\le\frac{1}{2xy+2}\)
\(\left(y^2+z^2\right)\ge2yz\)
suy ra \(\frac{1}{y^2+z^2+2}\le\frac{1}{2yz+2}\)
tượng tự vs BDT con lại rồi + vế vs vế ta được
\(VT\le\frac{1}{2xy+2}+\frac{1}{2yz+2}+\frac{1}{2xz+2}=\frac{1}{xy+xy+1+1}+\frac{1}{yz+yz+1+1}+\frac{1}{xz+xz+1+1}\)
gọi cái \(\frac{1}{yz+yz+1+1}+.........=Pain\)
áp dụng cosi sáp cho 4 số ta được
\(\frac{1}{xy+xy+1+1}\le\frac{1}{16}\left(\frac{1}{xy}+\frac{1}{xy}+\frac{1}{1}+\frac{1}{1}\right)\)
\(\frac{1}{yz+yz+1+1}\le\frac{1}{16}\left(\frac{1}{yz}+\frac{1}{yz}+\frac{1}{1}+\frac{1}{1}\right)\)
\(\frac{1}{xz+xz+1+1}\le\frac{1}{16}\left(\frac{1}{xz}+\frac{1}{xz}+\frac{1}{1}+\frac{1}{1}\right)\)
+ vế với vế ta được
\(VT\le Pain\le\frac{1}{16}\left(\frac{2}{xz}+\frac{2}{yz}+\frac{2}{xy}+\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)\)
\(VT\le PAIN\le\frac{1}{8}\left(\frac{1}{xz}+\frac{1}{yz}+\frac{1}{xy}+1+1+1\right)\)
bây giờ m đi chứng minh cái \(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{xy}\ge3\) chắc là m làm được
áp dụng BDT cô si ta có
\(\frac{1}{xz}+xz\ge2\)
\(\frac{1}{yz}+yz\ge2\)
\(\frac{1}{xz}+zx\ge2\)
+ vế với vế ta được
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+xy+yz+zx\ge6\)
mà đề bài cho xy+yz+xz=3 suy ra
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3\)
nhưng mà nó trái dấu oy :(( kệ nhé cứ thay vào nhé không sao hết bạn oy :)
thay vào ta được
\(VT\le PAIN\le\frac{1}{8}\left(3+3\right)=\frac{3}{4}\)
ĐIỀU CẦN PHẢI CHỨNG MINH :((
Lời giải:
Ta có:
\(\text{VT}=\frac{1}{x^2+y^2+2}+\frac{1}{y^2+z^2+2}+\frac{1}{z^2+x^2+2}\)
\(\Rightarrow 2\text{VT}=\frac{2}{x^2+y^2+2}+\frac{2}{y^2+z^2+2}+\frac{2}{z^2+x^2+2}\)
\(2\text{VT}=1-\frac{x^2+y^2}{x^2+y^2+2}+1-\frac{y^2+z^2}{y^2+z^2+2}+1-\frac{z^2+x^2}{z^2+x^2+2}\)
\(2\text{VT}=3-\left(\frac{x^2+y^2}{x^2+y^2+2}+\frac{y^2+z^2}{y^2+z^2+2}+\frac{z^2+x^2}{z^2+x^2+2}\right)=3-A\)
Áp dụng BĐT Cauchy-Schwarz:
\(A\geq \frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2)+6}=\frac{(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2}{2(x^2+y^2+z^2+xy+yz+xz)}(*)\)
Xét tử số:
\((\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\)
\(=2(x^2+y^2+z^2)+2(\sqrt{(x^2+y^2)(x^2+z^2)}+\sqrt{(x^2+y^2)(y^2+z^2)}+\sqrt{(y^2+z^2)(z^2+x^2)})\)
Áp dụng BĐT Bunhiacopxky:
\(\sqrt{(x^2+y^2)(x^2+z^2)}\geq \sqrt{(x^2+yz)^2}=x^2+yz\)
\(\sqrt{(x^2+y^2)(y^2+z^2)}\geq \sqrt{(xz+y^2)^2}=xz+y^2\)
\(\sqrt{(y^2+z^2)(z^2+x^2)}\geq \sqrt{(z^2+xy)^2}=z^2+xy\)
\(\Rightarrow \sum \sqrt{(x^2+y^2)(x^2+z^2)}\geq x^2+y^2+z^2+xy+yz+xz\)
\(\Rightarrow (\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2})^2\geq 4(x^2+y^2+z^2)+2(xy+yz+xz)\)
\(\geq 3(x^2+y^2+z^2)+3(xy+yz+xz)=3(x^2+y^2+z^2+xy+yz+xz)\)
(theo BĐT AM-GM)
Do đó: Từ \((*)\Rightarrow A\geq \frac{3(x^2+y^2+z^2+xy+yz+xz)}{2(x^2+y^2+z^2+xy+yz+xz)}=\frac{3}{2}\)
\(\Rightarrow 2\text{VT}\leq 3-\frac{3}{2}=\frac{3}{2}\)
\(\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z=1\)
We have: \(\dfrac{1}{x^2+y^2+2}=\dfrac{1}{x^2+y^2+z^2+2-z^2}\le\dfrac{1}{5-z^2}\)
Similarly and by adding them:
\(\dfrac{1}{5-x^2}+\dfrac{1}{5-y^2}+\dfrac{1}{5-z^2}\le\dfrac{3}{4}\left(\circledast\right)\)
We know that \(\dfrac{1}{5-x^2}\le\dfrac{3\left(x^2+x\right)}{8\left(x^2+x+1\right)}\)
\(\Leftrightarrow-\dfrac{\left(x-1\right)^2\left(3x^2+9x+8\right)}{8\left(x^2-5\right)\left(x^2+x+1\right)}\le0\) It's obviously
\(\Rightarrow L.H.S_{\left(\circledast\right)}\le\dfrac{3}{8}\left(\dfrac{x^2+x}{x^2+x+1}+\dfrac{y^2+y}{y^2+y+1}+\dfrac{z^2+z}{z^2+z+1}\right)\le\dfrac{3}{4}\)
The equality occur when \(x=y=z=1\)
Done!
a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)
\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)
\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)
\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)
b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)
Áp dụng câu a ta được
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ
Bài 1:
\(\frac{2}{x^2+2y^2+3}=\frac{2}{\left(x^2+y^2\right)+\left(y^2+1\right)+2}\le\frac{2}{2xy+2y+2}=\frac{1}{xy+y+1}\)
Bài 2:
\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52.4}{\left(2x+3y\right)^2}\)
\(A\ge\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}=\frac{224}{\left(2x+3y\right)^2}\ge\frac{224}{4}=56\)
\(A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)
a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:
\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)
\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)
\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)
Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
Mà \(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)
\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)