K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự: A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

=> q = 3

b)126: a dư 25=>a khác 0 ; 1;126

=>126-25=101 chia hết cho a

Mà 101=1.101

=>a=1(L) hoặc a=101(TM)

Vậy a=101

17 tháng 3 2020

gọi số cần tìm là A :

chia cho 29 dư 5

A = 29 x p + 5 ( p \(\in\)N )

A = 31 x q + 28 ( q \(\in\)N )

nên :

29 x p + 5 = 31 x q + 28 

=> 29 x ( p - q ) = 2 x q + 23

ta có :

2 x q + 23 là số lẻ

=> 29 x ( p - q )  là số lẻ

vậy p - q = 1

theo giả thiết phải tìm A  nhỏ nhất :

=> 2q = 29 x ( p - q ) - 23 nhỏ nhất

=> q nhỏ nhất ( A = 31 x q + 28 )

=> p - q nhor nhất

suy ra : 2 x q = 29 x 1 - 23 = 6 

=> q = 6 : 2 = 3

vậy số cần tìm là : A = 31 x q + 28 =31 x 3 + 28 = 131

12 tháng 3 2016

cai nay de a

12 tháng 3 2016

Số này là 26 đó bạn!

:))

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

10 tháng 3 2021

Gọi x và y lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là số tự nhiên)

Ta có: a = 4x + 3 => 27a = 108x + 81 (1) 

a = 9y + 5 => 28a = 252y + 140 (2) (Cùng nhân với 28)

Lấy (2) trừ (1) ta được:  28a - 27a = 36.(7c - 3b) + 59

\(\Leftrightarrow\) a = 36. (7c - 3b + 1) + 23

Vậy a chia cho 36 dư 23. 

10 tháng 3 2021

- Ta có : a chia 4 dư 3 `=> a=4k+3  (k in NN)`

- Ta lại có : a chia 9 dư 5 `=> a-5vdots9`

`=> 4k+3-5vdots9`

`=> 4k-2vdots9`

`=> 4k-2-18 vdots9`

`=> 4k-20vdots9`

`=> 4(k-5)vdots9`

mà (4;5)=1

`=> k-5vdots9`

`=> k-5=9m  (m in NN)`

`=> k=9m+5`

- Thay `k=9m+5` vào biểu thức `a=4k+3` ta có :

`a=4.(9m+5)+3`

`-> a=36m+20+3`

`-> a=36m+23`

- Vậy a chia 36 dư 23

6 tháng 3 2017

Đặt a là số nhỏ nhất chia cho 5 dư 1 , chia 7 dư 5 

Ta có : a chia cho 5 dư 1 \(\Rightarrow\)a + 9 chia hết cho 5  ( 1 )

             a chia cho 7 dư 5 \(\Rightarrow\)a + 9 chia hết cho 7  ( 2 ) 

Từ ( 1 ) và ( 2 ) và n nhỏ nhất \(\Rightarrow\)a + 9 \(\in\)BCNN ( 5;7 ) = 35 

a + 9 = 35 \(\Rightarrow\)a = 26 

6 tháng 3 2017

Ai nhanh nhất mình tk cho

3 tháng 1 2018

2, TA có:

x + y + xy = 40

=> x(y + 1) + y + 1 = 41

=> (x + 1)(y + 1) = 41

=> x + 1 thuộc Ư(41) = {1; 41}

Xét từng trường hợp rồi thay vào tìm y

3 tháng 1 2018

Có lẽ các bạn thấy hơi dài nhưng các bạn có thể làm 1 trong 3 câu cũng được. Nhưng đừng làm sai nhé! Hihihi...

5 tháng 7 2015

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1