K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 11 2020

ĐK: \(x\ge0\)

Có: \(\sqrt{x}< \sqrt{x}+1< x+\sqrt{x}+1\Rightarrow P=\frac{\sqrt{x}}{x+\sqrt{x}+1}< 1\)

mà từ \(P\ge0\)(vì \(\sqrt{x}\ge0,x+\sqrt{x}+1>0\))

\(P\)nguyên nên suy ra \(P=0\)\(\Rightarrow x=0\).

Vậy với \(x=0\)thì \(P\)nguyên. 

8 tháng 8 2018

ms hk xog bài này !!!

^_^

26 tháng 12 2020

\(P=\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right):\left(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\right)\)

\(=\left[\frac{\left(x\sqrt{x}-1\right)\left(x+\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}-\frac{\left(x\sqrt{x}+1\right)\left(x-\sqrt{x}\right)}{\left(x-\sqrt{x}\right)\left(x+\sqrt{x}\right)}\right]:\left[\frac{2\left(\sqrt{x}-1\right)^2}{x-1}\right]\)

Phương trình tương đương : 

\(=\frac{2x^2-2x}{x^2-x}:\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=2:\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\frac{2\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

9 tháng 6 2017

Đặt \(\sqrt{x}=a\) , a \(\ge0\) 

a , Khi đó biểu thức trở thành :

Q = \(\frac{2a-9}{a^2-5a+6}-\frac{a+3}{a-2}-\frac{2a+1}{3-a}\)

Đến đây làm như lớp 8 thôi

19 tháng 8 2020

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(P=\frac{x-3\sqrt{x}-x-9}{x-9}.\frac{x\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}\)

\(P=\frac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{x\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)

\(P=\frac{-3x}{2\left(\sqrt{x}+2\right)}\)

11 tháng 7 2019

\(đkxđ\Leftrightarrow x\ge4\)

\(P=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)

\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\frac{4^2}{x^2}-2.\frac{4}{x}+1}}\)

\(=\frac{\sqrt{\left(x-4+2\right)^2}+\sqrt{\left(x-4-2\right)^2}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)

\(=\frac{|x-2|+|x-6|}{|\frac{4}{x}-1|}=\frac{x-2+|x-6|}{|\frac{4}{x}-1|}\)

Dùng bảng xét dấu nha