cho tam giác ABC có góc A =120độ ,đường cao BH cắt cạnh đối AC tại H .
chứng minh 2AH=AB
cao nhân giỏi toán nào giúp tui với đang cần gắp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACK
b: Xét ΔKEB vuông tại K và ΔHEC vuông tại H có
\(\widehat{KEB}=\widehat{HEC}\)
DO đó: ΔKEB\(\sim\)ΔHEC
Suy ra: EK/EH=EB/EC
hay \(\dfrac{EK}{EB}=\dfrac{EH}{EC}\)
c: Xét ΔAKH và ΔACB có
AK/AC=AH/AB
góc A chung
Do đó: ΔAKH\(\sim\)ΔACB
Suy ra: \(\widehat{AKH}=\widehat{ACB}\)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔACK
b: Xét ΔKEB vuông tại K và ΔHEC vuông tại H có
\(\widehat{KEB}=\widehat{HEC}\)
DO đó: ΔKEB\(\sim\)ΔHEC
Suy ra: EK/EH=EB/EC
hay \(\dfrac{EK}{EB}=\dfrac{EH}{EC}\)
c: Xét ΔAKH và ΔACB có
AK/AC=AH/AB
góc A chung
Do đó: ΔAKH\(\sim\)ΔACB
Suy ra: \(\widehat{AKH}=\widehat{ACB}\)
a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC
mà AC=10cm => AB=10cm
Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H
=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)
dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm
Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC
=> BH=CH=6cm
b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)
Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)
Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)
từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)
Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)
=> AK=AD
Bài 4:
Gọi M là giao điểm của EF với BC, N là giao điểm của DF với AB, ta có:
Ta có: DF vuông góc với AH
BC vuông góc với AH
DF song song với BC (hay BM) (2 góc trong cùng phía)
Mà là góc ngoài của nên
AB song song với MF (hay EF) (vì có 2 góc đồng vị bằng nhau) (1)
(2 góc so le trong)
Xét và có:
AH = DE (vì AD +DH = DH + HE)
(ch/minh trên)
(cạnh góc vuông - góc nhọn) DF = BH (2 cạnh tương ứng)
Xét và có:
HE = AD (gt)
BH = DF (ch/minh trên)
(2 cạnh góc vuông) (2 góc tương ứng)
BE song song với AF (hay AC) (vì có 2 góc so le trong bằng nhau) (2)
Mặt khác: BA vuông góc với AC (3)
Từ (1), (2) và (3) suy ra: BE vuông góc với EF (đpcm)
\(\widehat{BAH}=180^o-\widehat{BAC}=180^o-120^o=60^o\)
Xét tg vuông ABH có
\(\widehat{ABH}=90^o-\widehat{BAH}=90^o-60^o=30^o\)
\(\Rightarrow AH=\frac{AB}{2}\) (Trong tg vuông cạnh đối diện góc 30 bằng nửa cạnh huyền) \(\Rightarrow2AH=AB\left(dpcm\right)\)