Chứng minh 1-1/2+1/3-1/4+...+1/2002-1/2003 = 1/1002+1/1003+...+1/2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án của tớ là:
\(\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}=\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)-\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)=\)\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)\(-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-...-\frac{1}{2002}\)
Vậy:\(1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2003}\)
xin chòa hôm nay mình sẽ giúp bạn lam bài toán này
ta có
1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1+1/2+1/3+....+1/1001)
1/1002+1/1003+....+1/2003=(1+1/2+1/3+.....+1/2003)-(1/2+1/4+1/6+....+1/2002)-(1/2+1/4+1/6+......+1/2002)
1/1002+1/1003+.....+1/2003=1+1/2+1/3+....+1/2003-1/2+1/4+1/6+....+1/2002-1/2-1/4-1/6-....-1/2002
Vậy1/1002+1/1002+.....+1/2003=1-1/2+1/3-1/4+....-2/2002-1/2003
vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)(do 22 > 1.2)
\(\frac{1}{3^2}< \frac{1}{2.3}\)(do 32>2.3)
\(\frac{1}{4^2}< \frac{1}{3.4}\)(do 42 >3.4)
...
\(\frac{1}{2002^2}< \frac{1}{2001.2002}\)(do 20022 > 2001.2002)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)(2)
Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2001.2002}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}\)
\(=\frac{1}{1}-\frac{1}{2002}\)
\(=\frac{2002}{2002}-\frac{1}{2002}\)
\(=\frac{2001}{2002}< 1\)(2)
Từ (1) và (2) suy ra: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2002^2}< 1\)
Bài toán được chứng minh
Lời giải:
Đề sai, đoạn cuối phải là $2001+(-2002)+2003$
$1+(-2)+3+(-4)+....+2001+(-2002)+2003$
$=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]+2003$
$=\underbrace{(-1)+(-1)+(-1)+...+(-1)}_{1001}+2003$
$=(-1).1001+2003=-1001+2003=1002$
Đáp án D.
S=\(\left(1+\frac{1}{2}+......+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{2002}\right)\)
=\(\left(1+\frac{1}{2}+.........+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+.........+\frac{1}{1001}\right)\)
=\(\frac{1}{1002}+\frac{1}{1003}+...........+\frac{1}{2002}=P\)
\(\Rightarrow S-P=0\)
ta thấy : \(\dfrac{-1003}{-2002}\) = \(\dfrac{1003}{2002}\)
\(\dfrac{1004}{-2003}\) = \(\dfrac{-1004}{2003}\)
Sắp xếp : \(\dfrac{1004}{-2003}\) <\(\dfrac{-1003}{2003}\) <\(\dfrac{-1002}{2003}\) <\(\dfrac{1001}{2002}\) <\(\dfrac{-1003}{-2002}\)
Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath