Chứng minh : 112015 - 1 chia hết cho 2 và 5
Gợi ý : Làm bằng 2 cách :
Cách 1 : Xét chữ số tận cùng
Cách 2 : Dùng đồng dư thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^1995 - 1 = ( 2^5)^399 = 32^399 -1
Ma 32 dong du vs 1( mod 31 )
=> 32^399 dong du vs 1( mod 31 )
=> 32^399 dong du vs 0( mod 31 )
=> 2^1995 - 1 chia het cho 31 ( dpcm )
Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)
Mà \(32\equiv1\)(mod 31)
\(\Rightarrow2^{1995}\equiv1\)(mod 31)
\(\Rightarrow2^{1995}-1⋮31\)(đpcm)
Gọi số cần tìm có dạng là ab
Ta có b chia cho 5 dư 2 nên b=2 hoặc 7 mà nếu b =2 thì 2 sẽ chia hết cho b nên b=7
Để a7 chia hết cho 9 thì a+7 phải chia hết cho 9 $\Rightarrow$⇒a=2
Vậy số đó là số 27
1 / Gọi số cần tìm là ab (ab là số tự nhiên; a, b khác 0). Ta có:
ab = a.b.3
10.a + b = a.b.3
=> ab chia hết cho 3
=> a + b chia hết cho 3
Mà ab chia hết cho a mà 10.a chia hết cho a nên b cũng phải chia hết cho a (Ta cũng có 10.a + b chia hết cho b mà b chia hết cho b nên 10.a cũng chia hết cho b).
=> 10.a có dạng b.k (10>=k>=1) (*)
Thay vào, ta có:
b.k + b = a.b.3
b.(k+1) = a.b.3
k+1 = 3.a
=> k+1 chia hết cho 3
=> k+1 = 3, 6, 9
Thay vào (*)
+ Với k+1 = 3 thì a = 1, khi đó b = 10.1:2 = 5
+ Với k+1 = 6 thì a = 2, khi đó b = 10.2:5 = 4
+ Với k+1 = 9 thì a = 3, khi đó b = 10.3:8 <lẻ>
Vậy ab có 2 kết quả cần tìm là 15 và 24
Ta có:
11 đồng dư với 1 (mod 10)
=> 112015 đồng dư với 12015 (mod 10)
=> 112015 đồng dư với 1 (mod 10)
=> 112015 - 1 đồng dư với 1 - 1 (mod 10)
=> 112015 - 1 đồng dư với 0 (mod 10)
=> 112015 - 1 chia hết cho 10
mà 10 chia hết cho 2 và 5 => 112015 - 1 chia hết cho 2 và 5
Ta có: 112015 - 1 = (...1) - 1 = (...0) chia hết cho 10
Mà 10 chia hết cho 2 và 5 => (...0) chia hết cho 2 và 5 => 112015 - 1 chia hết cho 2 và 5
Monkey D.Luffy khôn v~, éo bt từ tiếg a vt kiểu j` :v