Tìm GTLN của biểu thức
\(\frac{4}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=x^2,t\ge0\)\(\Rightarrow M=\frac{4t}{t^2+1}\)
Xét : \(\frac{1}{M}=\frac{t^2+1}{4t}=\frac{t}{4}+\frac{1}{4t}=\frac{1}{4}\left(t+\frac{1}{t}\right)\ge\frac{1}{4}.2=\frac{1}{2}\)
Do đó, \(M\ge2\). Dấu "=" xảy ra \(\Leftrightarrow t=\frac{1}{t}\Leftrightarrow t=1\)( t > 0 ) \(\Rightarrow x=\pm1\)
Vậy M đạt giá trị nhỏ nhất bằng 2 , khi \(x=\pm1\)
Câu hỏi của Nguyễn Ngọc Minh - Toán lớp 8 - Học toán với OnlineMath
Ta có:\(M=\frac{1}{\left|x-3\right|+4}\) lớn nhất\(\Leftrightarrow\left|x-3\right|+4\) nhỏ nhất
Mà \(\left|x-3\right|\ge0\Rightarrow\left|x-3\right|+4\ge4\)
\(\Rightarrow M\le\frac{1}{4}\)
Vậy GTLN M là \(\frac{1}{4}\Leftrightarrow x=3\)
Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)
1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :
\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)
\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :
\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)
2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :
\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)
\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)
Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)
Câu 1:
Đầu tiên,ta chứng minh BĐT phụ (mang tên Cô si): \(x+y\ge2\sqrt{xy}\)
Thật vậy,điều cần c/m \(\Leftrightarrow x+y-2\sqrt{xy}\ge0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) (luôn đúng)
Vậy BĐT phụ (Cô si) là đúng.
----------------------------------------------------------
Áp dụng BĐT Cô si,ta có: \(2\sqrt{x}=2\sqrt{1x}\le x+1\)
Do đó:
\(B=\frac{2\sqrt{x}}{x+1}\le\frac{x+1}{x+1}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\left(x^2-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x^2-1\right)^2+9\ge0\forall x\)
Để A có GTLN thì (x2-1)2+9 phải nhỏ nhất
=>(x2-1)2+9=9
=>x=0
\(\Rightarrow A=\frac{4}{\left(0^2-1\right)^2+}=\frac{4}{10}=0,4\)