Xác định giá trị của a để đa thức A = 2x3 + 7x + ax + 3 chia hết cho đa thức B = (x + 1)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Cách 1:
x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
1. Ta có \(\frac{x^3+4x^2+ax+b}{x^2+x-2}=\frac{x\left(x^2+x-2\right)+3\left(x^2+x-2\right)+\left(a-1\right)x+b+6}{x^2+x-2}=x+3+\frac{\left(a-1\right)x+b+6}{x^2+x-2}\)
Để đa thức \(x^3+4x^2+ax+b\)chia hết cho đa thức \(x^2+x-2\)
thì \(\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)
Vậy a=1;b=-6 thì ....
2. Ta có \(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\forall x\)
\(\Rightarrow M\ge-36\)
Vậy \(MinM=-36\Leftrightarrow x^2+5x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
1) Có A = x3 + 4x2 + ax + b
= x3 + x2 - 2x + 3x2 + 3x - 6 - x + ax + b + 6
= x(x2 + x - 2) + 3(x2 + x - 2) + (a - 1)x + (b + 6)
= (x2 + x - 2)(x + 3) + (a - 1)x + (b + 6)
Do (x2 + x - 2)(x + 3) chia hết cho x2 + x - 2 nên để A chia hết cho x2 + x - 2
thì (a - 1)x + (b + 6) = 0 với mọi x
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+6=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-6\end{cases}}}\)
2) Có M = (x - 1)(x + 2)(x + 3)(x + 6)
= [(x - 1)(x + 6)] [(x + 2)(x + 3)]
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 36
Thấy (x2 + 5x)2 ≥ 0 với mọi x
=> (x2 + 5x)2 - 36 ≥ -36 với mọi x
=> M ≥ -36 với mọi x
Dấu "=" xảy ra khi x2 + 5x = 0
<=> x(x + 5) = 0
<=> x = 0 hoặc x + 5 = 0
<=> x = 0 hoặc x = -5
Vậy min M = -36, đạt đc khi x = 0 hoặc x = -5
P/s: ko chắc
a: Khi x=-1 thì B=2*(-1)^2+1+1=4
b: Để A chia hết cho B thì
\(2x^3-x^2+x+6x^2-3x+3+a-3⋮2x^2-x+1\)
=>a-3=0
=>a=3
c: Để B=1 thì 2x^2-x=0
=>x=0 hoặc x=1/2
Mình nghĩ là sửa A = 2x3 + 7x2 + ax + 3 thì sẽ hợp lí hơn :)
A = 2x3 + 7x2 + ax + 3
B = ( x + 1 )2 = x2 + 2x + 1
A bậc 3, B bậc 2 => Thương bậc 1
Hệ số cao nhất của A là 2, hệ số cao nhất của B là 1 => Hệ số cao nhất của thương là 1
Hệ số tự do của A là 3, hệ số tự do của B là 1 => Hệ số tự do của thương là 3
=> Đặt thương là C = 2x + 3
Khi đó A chia hết cho B
⇔ A = BC
⇔ 2x3 + 7x2 + ax + 3 = ( 2x + 3 )( x2 + 2x + 1 )
⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 4x2 + 2x + 3x2 + 6x + 3
⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 7x2 + 8x + 3
⇔ a = 8
Vậy a = 8