x/-6 = -20/15
x=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A, 7[x + 5] - 20 = 190
7x + 35 - 20 = 190
7x + 15 = 190
7x = 175
x = 25
B, 155 - 10[x + 1] = 55
155 - 10x - 10 = 55
-10x + 90 = 55
-10x = -35
x = 3.5
C, 6[x + 2^3] + 40 = 100
6[x + 8] + 40 = 100
6x + 48 + 40 = 100
6x + 88 = 100
6x = 1
2 x = 2
D, 15x - 133 = 17
15x = 150
x = 10
E, 90[x + 2] = 45
90x + 180 = 45
90x = -135
x = -1.5
F, 4x + 54 = 82
4x = 28
x = 7
G, 17x - 20 = 14
17x = 34
x = 2
a) Ta có: \(7x\left(x-20\right)-x+20=0\)
\(\Leftrightarrow\left(x-20\right)\left(7x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=20\\x=\dfrac{1}{7}\end{matrix}\right.\)
b) Ta có: \(x^3-15x=0\)
\(\Leftrightarrow x\left(x-\sqrt{15}\right)\left(x+\sqrt{15}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{15}\\x=-\sqrt{15}\end{matrix}\right.\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
<=> x + 1 = 16
<=> x = 15 (nhận)
~ ~ ~
\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow\sqrt{x+5}=2\)
<=> x + 5 = 4
<=> x = - 1 (nhận)
15 \(\times\) ( 2\(x\) - 16) - (6\(x^2\) + 15\(x\)): 3\(x\) = 20
15 \(\times\) (2\(x\) - 16) - 3\(x\)( 2\(x\) + 5):3\(x\) = 20
30\(x\) - 240 - (2\(x\) + 5) = 20
30\(x\) - 240 - 2\(x\) - 5 = 20
28\(x\) - 245 = 20
28\(x\) = 20 + 245
28\(x\) = 265
\(x\) = 265:28
15(2x-16)-(6\(x^2\)+15x):3x=20
=>30x-240-2x-5=20
=>28x=265
=>x=\(\dfrac{265}{28}\)
(5x-2)(3x+1)+(7-15x)(x+3)=-20
<=> 15x2+5x-6x-2+7x+21-15x2-45x+20=0
<=>39-39x=0
<=>39(1-x)=0
<=>1-x=0
=>x=1
(5x-2)(3x+1)+(7-15x)(x+3)=-20
=>\(15x^2-6x+5x-2+7x-15^2+21-45x=-20\)
=>\(-39x+19=-20\)
=>\(-39x=-39\)
=>\(x=1\)
vậy x=1
\(x^6-6x^5+15x^4-20x^3+15x^2-6x+1=0\)
\(\Leftrightarrow x^6-x^5-5x^5+5x^4+10x^4-10x^3-10x^3+10x^2+5x^2-5x-x+1=0\)
\(\Leftrightarrow x^5\left(x-1\right)-5x^4\left(x-1\right)+10x^3\left(x-1\right)-10x^2\left(x-1\right)+5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^5-5x^4+10x^3-10x^2+5x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^5-x^4-4x^4+4x^3+6x^3-6x^2-4x^2+4x+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^4\left(x-1\right)-4x^3\left(x-1\right)+6x^2\left(x-1\right)-4x\left(x-1\right)+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^4-4x^3+6x^2-4x+1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^4-x^3-3x^3+3x^2+3x^2-3x-x+1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3\left[x^3-3x^2+3x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3\left[x^3-x^2-2x^2+2x+x-1\right]=0\)
\(\Leftrightarrow\left(x-1\right)^4\left[x^2-2x+1\right]=0\Leftrightarrow\left(x-1\right)^6=0\Leftrightarrow x=1\)
18x -19 = 21 + 8x
18 x - 8x = 21 + 19
10 x = 40
x =4
g) 18 -4x=-20-6x
-4x + 6x = -20 - 18
2x = -38
x= -19
k, -10 \(x\) - 27 = -7\(x\) + 33
-27 - 33 = -7\(x\) + 10\(x\)
3\(x\) = -60
\(x\) - 20
m, -17\(x\) - 24 = -9\(x\) - 40
-24 + 40 = -9\(x\) + 17\(x\)
8\(x\) = 16
\(x\) = 2
(5x - 2) . (3x + 1) + (7 - 15x) . (x + 3) = 20
=> 15x2 + 5x - 6x - 2 + 7x + 21 - 15x2 - 45x = 20
=> (15x2 - 15x2) + (5x - 6x + 7x - 45x) = 20 + 2 - 21
=> 0 + [x . (5 - 6 + 7 - 45)] = 1
=> -39x = 1
=> x = 1 : (-39)
Vậy x = \(\frac{-1}{39}\)