Cho hình bình hành ABCD. Trên đường chéo BD lấy 2 điểm M và N sao cho BM = DN = 1/3 BD
a) CM rằng: tam giác AMB = tam giác CND
b) AC cắt BD tại O. CM tứ giác AMCN là hình bình hành
c) AM cắt BC tại I. CM rằng: AM = 2MI
d) CN cắt AD tại K. CM: I và K đối xứng với nhau qua O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔCND có
AB=CD
\(\widehat{ABM}=\widehat{CDN}\)
BM=DN
Do đó: ΔAMB=ΔCND
a. Tứ giác ABCD là hình bình hành.
(tính chất hình bình hành)
và (so le trong)
Xét và có:
(cmt)
(cmt)
(GT)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
a) Vì tứ giác ABCD
=>AB//CD
=>^AMB=^CND (2 góc so le trong)
Xét t/gAMB và t/gCND ta có:
MB=DN (gt)
^AMB=^CND (cmt)
AB=CD ( hai cạnh đối của hbh = nhau)
b) quên vẽ điểm O vẽ hộ nhé
Vì AC cắt BD tại O
do đó: O là trung điểm của BD và AC
=>OA=OC (1)
=>OB=OD
Mà ta có: OD=OB (cmt)
mà DN=BM (gt)
do đó: ON=OM (2)
Từ (1) và (2) =>AMCN là hbh ( 2 đường chéo cắt nhau tại trung điểm)
a: Xét tứ giác BMDN có
O là trung điểm của MN
O là trung điểm của BD
Do đó: BMDN là hình bình hành
Bài 1:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
\(\widehat{ADN}=\widehat{CBM}\)
Do đó: ΔADN=ΔCBM
Suy ra: DN=BM
a. Tứ giác ABCD là hình bình hành.
\(\Rightarrow AB=CD\)(tính chất hình bình hành)
và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)
Xét \(\Delta AMB\)và \(\Delta CND\)có:
\(AB=CD\)(cmt)
\(\widehat{ABM}=\widehat{CDN}\)(cmt)
\(BM=DN\)(GT)
\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.