C=5-3(2x-1)^2
D=1/2(x-1)^2+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(5-x\right)\left(x+5\right)-2\left(x-1\right)\left(x-3\right)-3\left(x-2\right)^2\)
\(=\left(5-x\right)\left(5+x\right)-\left(2x-2\right)\left(x-3\right)-3\left(x^2-2.2x+2^2\right)\)
\(=\left(5^2-x^2\right)-\left[2x\left(x-3\right)-2\left(x-3\right)\right]-3\left(x^2-4x+4\right)\)
\(=25-x^2-\left[\left(2x^2-6x\right)-\left(2x-6\right)\right]-3x^2+12x-12\)
\(=25-x^2-\left(2x^2-6x-2x+6\right)-3x^2+12x-12\)
\(=25-x^2-2x^2+6x+2x-6-3x^2+12x-12\)
\(=7+20x-6x^2\)
b/ \(B=\left(3-2x\right)\left(x-2\right)+\left(2x-5\right)^2-\left(x-4\right)\)
\(=3\left(x-2\right)-2x\left(x-2\right)+\left[\left(2x\right)^2-2.2x.5+5^2\right]-x+4\)
\(=3x-6-2x^2+4x+4x^2-20x+25-x+4\)
\(=23-14x+2x^2\)
c/ \(C=\left(x-4\right)\left(x-2\right)-3\left(x-2\right)\left(3-2x\right)-\left(2x+1\right)^2\)
\(=x\left(x-2\right)-4\left(x-2\right)-\left(3x-6\right)\left(3-2x\right)-\left[\left(2x\right)^2+2.2x.1+1^2\right]\)
\(=x^2-2x-4x+8-\left[3x\left(3-2x\right)-6\left(3-2x\right)\right]-4x^2-4x-1\)
\(=x^2-2x-4x+8-\left(9x-6x^2-18+12x\right)-4x^2-4x-1\)
\(=x^2-2x-4x+8-9x+6x^2+18-12x-4x^2-4x-1\)
\(=25-31x+3x^2\)
d/ \(D=2\left(x-1\right)^2-3\left(x-1\right)\left(x+2\right)-\left(2x+1\right)^2\)
\(=2.\left(x^2-2x+1\right)-\left(3x-3\right)\left(x+2\right)-\left[\left(2x\right)^2+2.2x+1\right]\)
\(=2x^2-4x+2-\left[3x\left(x+2\right)-3\left(x+2\right)\right]-\left(4x^2+4x+1\right)\)
\(=2x^2-4x+2-\left(3x^2+6x-3x-6\right)-\left(4x^2+4x+1\right)\)
\(=2x^2-4x+2-3x^2-6x+3x+6-4x^2-4x-1\)
\(=7-11x-5x^2\)
P/s: Ko chắc ạ!
a) \(\frac{-2}{3}x+\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{1}{10}-\frac{1}{5}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{3}{20}\)
a) \(\left(2x-5\right)^2-\left(2x+3\right)\left(2x-3\right)=10\Leftrightarrow\left(4x^2-20x+25\right)-\left(4x^2-9\right)-10=0\)
\(\Leftrightarrow-20x+24=0\Leftrightarrow x=\frac{6}{5}\)
b) \(\left(4x-1\right)\left(x+2\right)-\left(2x+3\right)^2-5\left(x-1\right)=9\Leftrightarrow-10x-15=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
c) \(\left(x+1\right)^3-\left(x-1\right)^3-2=6\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-8=0\)
\(\Leftrightarrow6x^2-6=0\Leftrightarrow x=\pm1\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+1\right)\left(x^2-x+1\right)-3\left(-x-2\right)=5\)
\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+1\right)+3x+6=5\Leftrightarrow3x+8=0\Leftrightarrow x=\frac{-8}{3}\)
a: =>14x+20+5=6x-9-9x
=>14x+25=-3x-9
=>17x=-34
=>x=-2
b: =>\(2x^2-30x+2x-30=2x^2+10x-10x-50\)
=>-28x-30=-50
=>-28x=-20
=>x=20/28=5/7
c: =>2x+x^3-x=x^3+1
=>x=1
d: =>x^3-3x^2+3x-1-x(x^2+2x+1)=10x-2x^2-11x-22
=>x^3-3x^2+3x-1-x^3-2x^2-x=-2x^2-x-22
=>-5x^2+2x-1+2x^2+x+22=0
=>-3x^2+3x+21=0
=>x^2-x-7=0
=>\(x=\dfrac{1\pm\sqrt{29}}{2}\)
bạn viết rõ đề ra nhé
a, \(\left|3x+1\right|-x-5=0\Leftrightarrow\left|3x+1\right|=x+5\)ĐK : \(x\ge-5\)
TH1 : \(3x+1=x+5\Leftrightarrow x=2\)( tm )
TH2 : \(3x+1=-x-5\Leftrightarrow x=-\dfrac{3}{2}\)( tm )
a: \(=2x\left(4x^2-4x+1\right)-3x^2-9x-4x^2-4x\)
\(=8x^3-8x^2+2x-7x^2-13x\)
\(=8x^3-15x^2-11x\)
c: \(=5x^3-5x^2-5x^3+5x^2-15=-15\)
d: \(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-\left(2x-1\right)\left(x^2-9\right)\)
\(=-16x^3-47x^2-26x+25-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
\(c.\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\\\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\\\Leftrightarrow x^2-x^2+9x+x-5x-3x=-9+15\\\Leftrightarrow 2x=6\\\Leftrightarrow x=3\)
Vậy nghiệm của phương trình trên là \(3\)