Cho tam giác ABC vuông tại A. Vẽ AH vuông góc với BC tại H. Tia phân giác của góc BAH cắt BH ở D.Chứng minh rằng:
a) góc ABH = góc HAC
b) góc ADC = góc DAC
------
Mng giải giúp mình với nhaaa. Mình cần gấp ý <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\bigtriangleup ABH\) vuông tại H (GT)
=> \(\widehat{B}+\widehat{BAH}=90^o\) (định lí tam giác vuông) (1)
Ta có : \(\widehat{BAH}+\widehat{A_3}=90^o\) (GT) (2)
Từ (1) và (2) => \(\widehat{B}+\widehat{BAH}=\widehat{BAH}+\widehat{A_3}\)
\(\Rightarrow\widehat{B}=\widehat{A_3}\) hay \(\widehat{ABH}=\widehat{HAC}\)
b) \(\bigtriangleup DAH\) vuông tại H
=> \(\widehat{D_1}+\widehat{A_2}=90^o\) (tính chất tam giác vuông) (1)
Ta có : \(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=90^o\) (GT) (2)
Từ (1) và (2) => \(\widehat{D_1}+\widehat{A_2}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}\)
\(\Rightarrow\widehat{D_1}=\widehat{A_1}+\widehat{A_3}\)
Mà \(\widehat{A_1}=\widehat{A_2}\) (GT)
=> \(\widehat{D_1}=\widehat{A_2}+\widehat{A_3}\)
Mà \(\widehat{A_2}+\widehat{A_3}=\widehat{DAC}\)
=> \(\widehat{D_1}=\widehat{DAC}\) hay \(\widehat{ADC}=\widehat{DAC}\)
mk lam cau a) cau b) tuong tu bn lam nhe
a) bn chỉ cần dựa vào 2 tam giác vuông ABC và HAC
góc ABH = 90 -C
góc HAC = 90-C
=> ABH = HAC
( bây giờ thì bn thấy wa dễ chứ)
\(\widehat{DAC}+\widehat{DAB}=90^0\)
\(\widehat{ADC}+\widehat{HAD}=90^0\)
mà \(\widehat{BAD}=\widehat{HAD}\)
nên \(\widehat{ADC}=\widehat{DAC}\)
a: góc B+góc C=90 độ
góc HAC+góc C=90 độ
=>góc B=góc HAC
=>góc C=góc BAH
b: góc CAD+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
c: ΔCAD cân tại C có CK là phân giác
nên CK vuông góc AD
Bạn tham khảo ở đây:
Câu hỏi của ngô thị gia linh - Toán lớp 7 - Học toán với OnlineMath
a. Xét tam giác HAC và tam giác ABC, có:
\(\widehat{C}\) : chung
\(\widehat{AHC}=\widehat{BAC}=90^o\)
Vậy tam giác \(HAC\sim\) tam giác \(ABC\) ( g.g )
b.\(\Rightarrow\dfrac{AH}{AB}=\dfrac{AC}{BC}\) (1)
Áp dụng định lý pytago tam giác ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\left(cm\right)\)
\(\left(1\right)\Leftrightarrow AH=\dfrac{AC.AB}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
c. Tam giác AHB có phân giác AD:
\(\Rightarrow\dfrac{AH}{AB}=\dfrac{HD}{BD}\) (2)
(1)(2) \(\Rightarrow\dfrac{HD}{BD}=\dfrac{AC}{BC}\) hay \(\dfrac{BD}{HD}=\dfrac{BC}{AC}\)
a)
\(\widehat{BAH}+\widehat{HAB}=90^0\)
\(\widehat{CAH}+\widehat{HAB}=90^0\)
\(\Rightarrow\widehat{CAH}=\widehat{HAB}\)
b)
\(\widehat{ADC}=\widehat{ABD}+\widehat{DAB}\)
\(\widehat{DAC}=\widehat{CAH}+\widehat{HAD}\)
Mà \(AD\) là phân giác \(\widehat{HAB}\)
\(\Rightarrow\widehat{HAD}=\widehat{DAB}\)
\(\Rightarrow\widehat{ADC}=\widehat{DAC}\)