Cho a + 4b chia hết cho 5 chứng minh rằng 4a + b chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a+4b=3a+[3+1]b=3a+3b+b=3[a+b]+b
vì 3[a+b] chia hết cho 19 nên b chia hết cho 19
4a+3b=a[3+1]+3b=3a+a+3b=3[a+b] +a
vì 3[a+b] chia hết cho 19 nên b chia hết cho 19
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
4a+3b=7a+7b-3a-4b=7(a+b)-(3a+4b) chia hết cho 7
+ Do 7(a+b) chia hết cho 7. Theo t/c chia hết của 1 tổng (hiệu) để 4a+3b chia hết cho 7 thì (3a+4b) cũng phải chia hết cho 7
=> 3a+4b chia hết cho 7
Xét hiệu: 3(a + 2b) - (3a - 4b) = 3a + 6b - 3a + 4b = 10b chia hết cho 5. (1)
Mặt khác: (a + 2b) chia hết cho 5 => 3(a + 2b) cũng chia hết cho 5 (2)
Từ (1) và (2) ta có: (3a - 4b) chia hết cho 5.
Ta có (a+ 2b) chia hết cho 5.
Suy ra a+b+b tận cùng bằng 0,5.
Suy ra 2b = 0 ( số chẵn)
Xét 2TH
TH1 a có tận cùng = 0 suy ra 3a có tận cùng = 0
4b=2b*2 có tận cùng =0 (1)
TH2 a có tận cùng là 5 suy ra 3a có tận cùng = 5
4b=2b*2 có tận cùng =0 (2)
Từ 1 và 2 suy ra nếu (a+2b) chia hết cho 5 thì (3a -4b) chia hết cho 5
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
7a+7b+4a+4b=7(a+b)+4(a+b)=(a+b)(7+4)=11(a+b) suy ra (7a+7b+4a+4b) chia hết cho 11.Học tốt
thì lấy 4+5=9 thôi
Dễ
Ta có a + 4b \(⋮\)5
=> 4(a + 4b) \(⋮\)5
=> 4a + 16b \(⋮\)5
=> 4a + b + 15b \(⋮\)5
Vì 15b \(⋮\)5
=> 4a + b \(⋮\)5 (đpcm)