Đồ thị hàm số \(y=\left\{{}\begin{matrix}2x+1khix\le2\\x^2-3khix>2\end{matrix}\right.\) đi qua điểm có tọa độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Thay x=-2 và y=2 vào hàm số, ta được:
4a=2
hay a=1/2
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=3\\4x-12y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y=x-5=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}=1\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{y}=\dfrac{1}{2}-\dfrac{1}{5}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(2;\dfrac{10}{3}\right)\)
Câu 1:
Thay \(x=\sqrt{2};y=2\sqrt{2}\) vào đồ thị hàm số \(y=ax^2\) ta có:
\(\left(\sqrt{2}\right)^2.a=2\sqrt{2}\Leftrightarrow2a=2\sqrt{2}\Leftrightarrow a=\sqrt{2}\)
Vậy \(a=\sqrt{2}\) thì đồ thị hàm số \(y=ax^2\) đi qua điểm \(\left(\sqrt{2};2\sqrt{2}\right)\)
b) \(\left\{{}\begin{matrix}2x+3y=-1\\x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.\left(3+2y\right)+3y=-1\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=-7\\x=3+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=3+2.\left(-1\right)=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm duy nhất là \(\left(1;-1\right)\)
Câu 1:
2)
a) Ta có: \(x^2-12x+27=0\)
\(\Leftrightarrow x^2-9x-3x+27=0\)
\(\Leftrightarrow x\left(x-9\right)-3\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=3\end{matrix}\right.\)
Vậy: S={9;3}