K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

a) Ta có: \(\left\{{}\begin{matrix}BD=AD\\CE=AE\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow BD+CE=AD+AE=ED\)

b) Ta có: \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOD}=\dfrac{1}{2}\widehat{AOB}\\\widehat{AOE}=\widehat{EOC}=\dfrac{1}{2}\widehat{AOC}\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

\(\Rightarrow\widehat{DOE}=\widehat{AOD}+\widehat{AOE}=\dfrac{1}{2}\left(\widehat{AOB}+\widehat{AOC}\right)=\dfrac{1}{2}.180^0=90^0\)

(Do \(\widehat{AOB},\widehat{AOC}\) là 2 góc kề bù)

c) Gọi K là trung điểm DE

Ta có: \(DB\perp BC,EC\perp BC\Rightarrow BD//EC\)

\(\Rightarrow BDEC\) là hình thang

Ta có: Tam giác ABC vuông tại A nội tiếp đường tròn (O)

=> O là trung điểm cạnh huyền BC

Xét hthang BDEC có:

O là trung điểm BC(cmt)

K là trung điểm DE(cách vẽ)

=> OK là đường trung bình

\(\Rightarrow\left\{{}\begin{matrix}OK//EC\\OK=\dfrac{1}{2}\left(BD+EC\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}OK=\dfrac{1}{2}DE=DK\\OK\perp BC\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}O\in\left(K\right)\\OK\perp BC\end{matrix}\right.\) => BC là tiếp tuyến đường tròn (K)

 

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

a) Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Suy ra: \(\widehat{BAD}=\widehat{BDA}\)(hai góc ở đáy)

b) Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)(tia AD nằm giữa hai tia AB,AC)

\(\widehat{HAD}+\widehat{HDA}=90^0\)(ΔHAD vuông tại H)

mà \(\widehat{BAD}=\widehat{HDA}\)(cmt)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là tia phân giác của \(\widehat{HAD}\)

c) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có 

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(Cạnh huyền-góc nhọn)

Suy ra: AH=AK(hai cạnh tương ứng)

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

24 tháng 11 2021

Ai giúp tui đi

24 tháng 11 2021

bạn viêt khó hiểu quá, bạn viết lại cho đúng nha

 

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)

=>\(\dfrac{DA}{6}=\dfrac{DC}{10}\)

=>\(\dfrac{DA}{3}=\dfrac{DC}{5}\)

mà DA+DC=AC=8cm(D nằm giữa A và C)

nên \(\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{8}{8}=1\)

=>\(DA=3\cdot1=3cm;DC=5\cdot1=5cm\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=MB=MC=\dfrac{BC}{2}=5\left(cm\right)\)

mà DC=5cm

nên CM=CD

Xét ΔCDI và ΔCMI có

CD=CM

\(\widehat{DCI}=\widehat{MCI}\)

CI chung

Do đó: ΔCDI=ΔCMI

=>\(\widehat{CID}=\widehat{CIM}\) và \(\widehat{IMC}=\widehat{IDC}\)(3)

Ta có: \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}\)(góc IDC là góc ngoài tại đỉnh D của ΔABD)

nên \(\widehat{IDC}=\widehat{BAD}+\widehat{ABD}=90^0+\widehat{ABD}\)(2)

Xét ΔBIM có \(\widehat{IMC}\) là góc ngoài tại đỉnh M

nên \(\widehat{IMC}=\widehat{MIB}+\widehat{MBI}\left(1\right)\)

Từ (1),(2),(3) suy ra \(\widehat{MIB}+\widehat{MBI}=90^0+\widehat{ABD}\)

mà \(\widehat{MBI}=\widehat{ABD}\)

nên \(\widehat{MIB}=90^0\)