K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

A) Xét tam giác ABH và tam giác ADH có :

HB=HD ( giả thiết)

HA ( cạnh chung)

góc DHA=góc BHA=90độ

suy ra tam giác ABH=tam giác ADH ( C-G-C)

B)Xét tam giác EHD và tam giác BHAcó:

HE=HA( GT)

góc AHB=góc DHE(hai góc đối đỉnh )

HD=HB( GT)

vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)

vậy BA=ED( hai cạnh tương ứng)

C)ta gọi giao điểm của ED và AC là I

ta có góc IEA = góc EAB( hai góc tương ứng)

mà hai góc này lại ở

 vị trí sole  trong ở hai đoạn thẳng BA và EI

suy ra :  BAsong song với EI

mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ

vậy EI vuong góc với AC

6 tháng 11 2015

tick cho mình đi rồi mình gửi bài cho còn không tick thì mình không bày đâu nhé

25 tháng 10 2021

5 năm rồi anh ấy vẫn chưa có câu trả lời

14 tháng 7 2023

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

1:

a: Xét ΔABD vuông tại D và ΔCAE vuông tại E có

AB=CA
góc ABD=góc CAE

=>ΔABD=ΔCAE

b: ΔABD=ΔCAE

=>BD=AE: AD=CE

=>BD-CE=BD-AD=DE

6 tháng 5 2021

hình bạn tự vẽ nhé

a. ví tam giác ABC là tam giác cân và có góc A bằng 90 độ nên tam giác ABC là tam giác vuông cân tại A

=> góc BAC = 90 độ và AB=AC

Xét tứ giác ABIC có góc BAC =90 độ, góc ABI = 90 độ (vì AIvuông góc với AB ), góc ACI =90độ (vì AC vuông góc với CI)

=> tứ giác ABIC là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)

mà AB=AC (cmt)

=> Tứ giác ABIC là hình vuông (dấu hiệu nhận  biết hình vuông)

=> AI là phân giác góc BAC

13 tháng 12 2021

mọi người chỉ cần làm ý b, c, d thui ạ,... mình cảm ơn :(

13 tháng 12 2021

Tham khảo:
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên ˆMCI=ˆNCIMCI^=NCI^(hai góc tương ứng)

hay ˆBCA=ˆKCABCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

ˆBCA=ˆKCABCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)