x e B (7),x < 42
60 x, x > 12
0(+2) : (x-5)
(4x+15) : (x-2)
(6x+1): (2x-3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
2. \(-x^2+2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\)
vì: \(-\left(x+1\right)^2\forall x\le0\Rightarrow-\left(x+1\right)^2-1\le-1< 0\left(đpcm\right)\)
6.
\(\left(x-2\right)\left(x-4\right)+3=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\)
vì: \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+2\ge2>0\left(đpcm\right)\)
a) x+15 = 20-4x
=> x=1
b) 17-x=7-6x
=> x=-2
c) -12+x=5x-20
=> x=2
d) 4x-5=15-x
=> x=4
e) 9x-7=20-6x
=>x= \(\frac{9}{5}\)
g)2.(x-10)=3.(x-20)=x-4
=> x thuộc ∅
h) (x^2+2).(x-3) <0
=> x=3,...
1) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4
Ta luôn có: -(x - 3/2)2 \(\le\)0 \(\forall\)x
=> -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 là 9/4 tại x = 3/2
2) Ta có : -(x2 + y2) + x + 3y+ 10 = -x2 - y2 + x + 3y + 10 = -(x2 - x + 1/4) - (y2 -3y + 9/4) + 25/2 = -(x - 1/2)2 - (y - 3/2)2 + 25/2
Ta luôn có: -(x - 1/2)2 \(\le\)0 \(\forall\)x
-(y - 3/2)2 \(\le\)0 \(\forall\)y
=> -(x - 1/2)2 - (y - 3/2)2 + 25/2 \(\le\)25/2 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy ...
a) \(x\left(x-3\right)>0\)
\(\Leftrightarrow x\) và \(x-3\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x-3>0\end{cases}}\Rightarrow x>3\)
\(TH:\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\Leftrightarrow x< 0\)
b) \(x\left(x+2\right)>0\)
\(\Leftrightarrow x\) và \(x+2\) cùng dấu
\(TH:\hept{\begin{cases}x>0\\x+2>0\end{cases}}\Rightarrow x>0\)
\(TH:\hept{\begin{cases}x< 0\\x+2< 0\end{cases}}\Leftrightarrow x< -2\)
c) \(\left(x+5\right)2x>0\)
\(\Leftrightarrow2x^2+10x>0\)
\(\Leftrightarrow x\inℕ^∗\)
d) \(x\left(x+3\right)< 0\)
\(\Leftrightarrow x\) và \(x+3\) trái dấu
Mà x < x + 3 nên \(\hept{\begin{cases}x< 0\\x+3>0\end{cases}}\Rightarrow-3< x< 0\)
Vậy \(x\in\left\{-2;-1\right\}\)
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) x\(\in\)B(7) và x<42
Ta có x\(\in\)B(7)= { 0;7;14;21;28;35;42;49:..}
mà x<42
Nên x={0;7;14;21;28;35}
b)60 \(⋮\)x và x>12
Ta có 60\(⋮\)x
=> x\(\in\)Ư(60)={1;2;3;4;5;6;10;12;15;20;30;60}
Mà x>12
Nên x={15;20;30;60}
c) , d) và e) không hiểu đề ok