K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

a) xét tam giác BAC ta có 
B=65 độ
C=65 độ 
=> tam giác ABC cân tại A
xét tam giác ABC ta có 
B+C+A=180độ
=>65+65+A=180 độ
=>A=50 độ
b) vì Ay//Bc
mà góc C và góc CAy là 2 góc so le trong
=>C=CAy
mà góc C= 65 độ 
=>CAy=65 độ
mà AC nằm giữa AB và Ay
=>BAC+CAy=BAy
=>BAy=65+50=115 dộ
c) vì góc BAy và góc xAy là 2 góc kề bù nên
=>BAy+xAy=180 độ
=>yAx=180-115=65 độ
mà Ay nằm giữa AC và Ax
mà CAy=xAy=65 độ
=>Ay là tia p/g của góc CAx

12 tháng 10 2021

dit con me mày

vai lon luon dau cat moi

 

15 tháng 3 2018

Ta có ∠A = 180o - 10o - 65o = 105o

Vì ∠C < ∠B < ∠A ⇒ AB < AC < BC hay BC > AC > AB. Chọn C

NV
27 tháng 7 2021

Kẻ đường cao AH ứng với BC

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)

\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)

NV
27 tháng 7 2021

undefined

5 tháng 12 2019

 Ta có ∠B = 180o - 35o - 65o = 80o

Vì góc A là góc nhỏ nhất nên cạnh BC nhỏ nhất. Chọn B

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

6 tháng 9 2018

Giải bài 29 trang 83 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Phân tích

Giả sử dựng được ΔABC thỏa mãn yêu cầu đề bài.

Đoạn thẳng BC dựng được vì đã biết độ dài.

Khi đó điểm A là giao điểm của:

+ Tia Bx tạo với đoạn thẳng BC góc 65º

+ Đường thẳng qua C và vuông góc với tia Bx vừa dựng.

b) Cách dựng:

- Dựng đoạn thẳng BC = 4cm.

- Dựng tia Bx tạo với BC một góc 65º.

- Dựng đường thẳng a qua C và vuông góc với Bx.

- Bx cắt a tại A.

ΔABC là tam giác cần dựng.

c) Chứng minh: ΔABC vừa dựng vuông tại A, góc B = 65º và BC = 4cm.

d) Biện luận: Ta luôn dựng được một tam giác thỏa mãn điều kiện đề bài.

27 tháng 2 2017

Giải bài 29 trang 83 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Phân tích

Giả sử dựng được ΔABC thỏa mãn yêu cầu đề bài.

Đoạn thẳng BC dựng được vì đã biết độ dài.

Khi đó điểm A là giao điểm của:

+ Tia Bx tạo với đoạn thẳng BC góc 65º

+ Đường thẳng qua C và vuông góc với tia Bx vừa dựng.

b) Cách dựng:

- Dựng đoạn thẳng BC = 4cm.

- Dựng tia Bx tạo với BC một góc 65º.

- Dựng đường thẳng a qua C và vuông góc với Bx.

- Bx cắt a tại A.

ΔABC là tam giác cần dựng.

c) Chứng minh: ΔABC vừa dựng vuông tại A, góc B = 65º và BC = 4cm.

d) Biện luận: Ta luôn dựng được một tam giác thỏa mãn điều kiện đề bài.

Bài 2: 

\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)

\(\Leftrightarrow2009-BC^2=980\)

hay \(BC=7\sqrt{21}\left(cm\right)\)

10 tháng 4 2017

Trong tam giác ABH có ∠(BAC) + ∠(ABH) = 90o

⇒ ∠(ABH) = 90o - 65o = 25o

Chọn D

25 tháng 11 2019

Trong tam giác ABH có ∠(BAC) + ∠(ABH) = 90o

⇒ ∠(ABH) = 90o - 65o = 25o

Chọn D

14 tháng 2 2022

từ đề suy ra:

\(\widehat{BAC}=\widehat{DAC}.2=30^o.2=60^o\)

\(\widehat{ABC}=2.\widehat{EBC}=2.30^o=60^o\)

áp dụng đl tổng 3 góc trong của một tam giác :

\(\widehat{ACB}+\widehat{BAC}+\widehat{ABC}=180^o\)

\(\widehat{ACB}+60^o+60^o=180^o\)

\(\Rightarrow\widehat{ACB}=60^o\)

Xét tam giác ABC có 3 góc trong đều bằng nhau và bằng 60\(^o\)

suy ra : ABC là tam giác đều(đpcm)

14 tháng 2 2022

-Ủa vậy chị vẽ hình chưa?