K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

Bạn ơi, lần sau gửi câu hỏi đúng môn học nhé! Đây là toán mà!

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\left(1\right)\)

Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AH^2=AE\cdot AB\left(2\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AH^2=AF\cdot AC\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)

7 tháng 10 2016

A B C H E F

7 tháng 10 2016

Xét ΔABH vuông tại H(gt)

=> \(AH^2=AE\cdot AB\)   (1)

Xét ΔAHC vuông tại C(gt)

=>\(AH^2=AF\cdot AC\)    (2)

Từ (1)(2) suy ra:

AE.AB=AF.AC

b) Xét ΔABH vuông tại H(gt)

=> \(AB^2=AH^2+BH^2=3^2+4^2=9+16=25\)

=>AB=25

Áp dụng hệ thức ta có:

\(AH^2=AE\cdot AB\)

=> \(AE=\frac{AH^2}{AB}=\frac{4^2}{5}=\frac{16}{5}\)

Có: AB=AE+BE

=>BE=AB-AE= \(5-\frac{16}{5}=\frac{9}{5}\)

 

 

22 tháng 10 2017

a) ta sẽ c/m 2 tam giác AFE và ABC đồng dạng

xét 2 tam giác trên ta có:

A^ chung ; AEF^ = ACB^ (cùng chắn cung AF của tứ giác nt AEHF)

=> 2 tam giác đồng dạng (g.g)

=> tỉ lệ => đẳng thức

b) tam giác vuông AHB : đường cao HE

=> AH^2 = AE * AB <=> AE = (AH)^2/ AB = .....thay vào.. (cm)

mặt khác: AB = AE+BE <=> BE = AB - AE = ...thay vào... (cm)

KL : AE = ....cm , BE = ...cm

22 tháng 10 2017

là sao? diỄm_triNh_2k3

b) Xét ΔMEB và ΔMCF có 

\(\widehat{MEB}=\widehat{MCF}\left(=\widehat{AEF}\right)\)

\(\widehat{M}\) chung

Do đó: ΔMEB\(\sim\)ΔMCF(g-g)

Suy ra: \(\dfrac{ME}{MC}=\dfrac{MB}{MF}\)

hay \(ME\cdot MF=MB\cdot MC\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)(hai góc tương ứng)

4 tháng 1 2019

a, Ta có: ∆AEF ~ ∆MCE (c.g.c)

=>  A F E ^ = A C B ^

b, Ta có: ∆MFB ~ ∆MCE (g.g)

=> ME.MF = MB.MC

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF và ΔACB có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)

\(\widehat{EAF}\) chung

Do đó: ΔAEF\(\sim\)ΔACB(c-g-c)

Suy ra: \(\widehat{AFE}=\widehat{ABC}\)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

21 tháng 9 2019

dễ vậy còn hỏi

a: Xét ΔABH vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

b: \(AB=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(AE=\dfrac{AH^2}{AB}=\dfrac{4^2}{5}=3.2\left(cm\right)\)

BE=AB-AE=1,8(cm)