K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 10 2020

ĐKXĐ: ...

- Với \(x\le-1\Rightarrow VT< 0< \frac{35}{12}\) pt vô nghiệm

- Với \(x>1\) hai vế ko âm, bình phương:

\(\Leftrightarrow x^2+\frac{x^2}{x^2-1}+\frac{2x^2}{\sqrt{x^2-1}}=\frac{1225}{144}\)

\(\Leftrightarrow\frac{x^4}{x^2-1}+\frac{2x^2}{\sqrt{x^2-1}}-\frac{1225}{144}=0\)

Đặt \(\frac{x^2}{\sqrt{x^2-1}}=t>0\)

\(\Rightarrow t^2+2t-\frac{1225}{144}=0\Rightarrow\left[{}\begin{matrix}t=\frac{25}{12}\\t=-\frac{49}{12}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-1}}=\frac{25}{12}\Leftrightarrow...\)

28 tháng 3 2020

a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)

hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)

\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)

\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)

\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)

b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)

Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)

Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được

\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)

(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)

(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)

28 tháng 3 2020

ok đợi nấu ăn xong r làm cho

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

4 tháng 10 2016

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

4 tháng 10 2016

Một bài làm rất hay !

\(\hept{\begin{cases}\frac{x}{\sqrt{y}}+\frac{2\sqrt{y}}{x}=\frac{2}{x}+\frac{1}{\sqrt{y}}-3\left(1\right)\\x^2-xy-9x+12=0\left(2\right)\end{cases}}\)

Đặt \(\frac{2}{x}=a,\frac{1}{\sqrt{y}}=b\left(b>0\right)\)

\(\left(1\right)\Leftrightarrow\frac{2b}{a}+\frac{a}{b}=a+b-3\)

\(\Leftrightarrow2b^2+a^2+3ab=ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a+2b\right)=\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)\left(a-ab+2b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-b\left(3\right)\\a-ab+2b=0\left(4\right)\end{cases}}\)

Giải (3)

\(\left(3\right)\Leftrightarrow\frac{2}{x}=-\frac{1}{\sqrt{y}}\Leftrightarrow\frac{4}{x^2}=\frac{1}{y}\)

\(\Leftrightarrow y=\frac{x^2}{4}\). Thay vào (2) tìm nghiệm (x,y)

Giải (4)

\(\left(4\right)\Leftrightarrow\frac{2}{x}-\frac{2}{\sqrt{y}}+\frac{2}{x\sqrt{y}}=0\)

\(\Leftrightarrow\sqrt{y}-x+2=0\)

Giải tiếp là ra

Học tốt!!!!!!!!!

8 tháng 5 2017

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

8 tháng 5 2017

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

11 tháng 8 2017

\(\sqrt{12-\frac{12}{x^2}}+\sqrt{x^2-\frac{12}{x^2}}=x^2\)

\(pt\Leftrightarrow\sqrt{12-\frac{12}{x^2}}-3+\sqrt{x^2-\frac{12}{x^2}}-1=x^2-4\)

\(\Leftrightarrow\frac{12-\frac{12}{x^2}-9}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{x^2-\frac{12}{x^2}-1}{\sqrt{x^2-\frac{12}{x^2}}+1}=x^2-4\)

\(\Leftrightarrow\frac{\frac{3x^2-12}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^4-x^2-12}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x^2-4\right)=0\)

\(\Leftrightarrow\frac{\frac{3\left(x-2\right)\left(x+2\right)}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{\left(x-2\right)\left(x+2\right)\left(x^2+3\right)}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^2+3}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-1\right)=0\)

SUy ra x=±2

11 tháng 8 2017

\(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)+\(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)=12

Đặt  \(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)=a                                   (a>0)

=> \(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)\(a^2\)

Chị QA 114 đấy

12 tháng 3 2016

Có :\(\sqrt{x^2}\)=x hoặc -x 

            thay vào rùi giải ra..là xong

12 tháng 3 2016

thần đồng đất việt giải rõ ra cho mk được không