Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh
Căn 2006 - căn 2005 và căn 2007 - căn 2006
\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\sqrt{2007}+\sqrt{2006}}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vì \(\sqrt{2006}+\sqrt{2005}< \sqrt{2007}+\sqrt{2006}\)
Nên \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vậy \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)
So sánh A và B :
a, A = 2006^2006 + 1 / 2006^2007 + 1 và B = 2006^2007 + 1 / 2006^2008 + 1
b, A = 2004 . 2005 - 1 / 2004 . 2005 và B = 2005 . 2006 - 1 / 2005 . 2006
a)A = B
b)A>B
bạn ơi , phải giải thích chứ sao mà hiểu được
tìm nghiệm dương của phương trình : (1 + x - căn(x2 -1) )2006 + (1+ x + căn(x2 -1) )2006 = 22007
so sánh
căn 2022 trừ căn 2021 và 1
Ta có: \(\sqrt{2022}-\sqrt{2021}=\dfrac{2022-2021}{\sqrt{2022}+\sqrt{2021}}=\dfrac{1}{\sqrt{2022}+\sqrt{2021}}\)
Ta có: \(\sqrt{2022}+\sqrt{2021}>1\Rightarrow\dfrac{1}{\sqrt{2022}+\sqrt{2021}}< 1\)
\(\Rightarrow\sqrt{2022}-\sqrt{2021}< 1\)
so sánh 2006^2006+1/2007^2007+1 và 2006^2005+1/2006^2006+1
So sánh A = 2006^2006+1/2007^2007+1 và B = 2006^2005+1/2006^2006+1
hỏi Huỳnh Thị Huyền Trang ấy
Tính giá trị biểu thức B= căn(2000*2001*2002*2004*2005*2006+36)
so sánh :A =(20062006+1)/(20072007+1) và B=(20062005+1)/(20062006+1)
cho mình xin lỗi sai ở 2 dòng cuối
đầu bài nó như thế chứ không có sai đâu cậu ạ! mk cũng đang hỏi câu này nè
So sánh A= 20062006+1/20072007+1
Và B=20062005+1/20062006+1
A<B
tick mình nha
A < B
\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\sqrt{2007}-\sqrt{2006}=\frac{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}{\sqrt{2007}+\sqrt{2006}}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vì \(\sqrt{2006}+\sqrt{2005}< \sqrt{2007}+\sqrt{2006}\)
Nên \(\frac{1}{\sqrt{2006}+\sqrt{2005}}>\frac{1}{\sqrt{2007}+\sqrt{2006}}\)
Vậy \(\sqrt{2006}-\sqrt{2005}>\sqrt{2007}-\sqrt{2006}\)