Tìm tham số m để đường thẳng y=2x+m cắt parabol y=-x^2 -2x -3 tại đúng một điểm. Tìm tọa độ giao điểm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
a:Khi m=3 thì phương trình hoành độ giao điểm là:
\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>x=3 hoặc x=-1
=>y=9 hoặc y=1
b: Phương trình hoành độ giao điểm là:
\(x^2-2x-m=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-m\right)=4m+4\)
Để phương trình có hai nghiệm phân biệt thì 4m+4>0
hay m>-1
Theo đề, ta có:
\(\left(x_1+x_2\right)^2+\left(x_1+x_2\right)-2x_1x_2=2020\)
\(\Leftrightarrow2^2+2-2\cdot\left(-m\right)=2020\)
=>2m+6=2020
=>2m=2014
hay m=1007
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m+1=-3
hay m=-4
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)
Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)
Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)
b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)
Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)
Vậy \(m=-\frac{9}{2}\)
a) Xét phương trình hoành độ giao điểm chung của (d) và (P) :
\(x^2=\left(2m-1\right)x-m^2+2\)
\(\Leftrightarrow x^2-\left(2m-1\right)x+m^2-2=0\left(1\right)\)
Thay m=2 vào pt (1) ta được:
\(x^2-3x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=2\Rightarrow y=4\end{cases}}\)
Tọa độ giao điểm của (d) và (P) khi m=2 là \(A\left(1;1\right);B\left(2;4\right)\)
b) \(\Delta_{\left(1\right)}=\left(2m-1\right)^2-4m^2+8\)
\(=4m^2-4m+1-4m^2+8\)
\(=9-4m\)
Để pt (1) có 2 n ghiệm pb \(\Leftrightarrow9-4m>0\Leftrightarrow m< \frac{9}{4}\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2m-1\\x_1.x_2=m^2-2\left(1\right)\end{cases}}\)
Ta có: \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1-3x_2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x_1+3x_2=6m-3\\x_1-3x_2=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{3m+2}{2}\\x_2=\frac{m-4}{2}\end{cases}\left(3\right)}\)
Thay (3) vào (2) ta được:
\(\frac{3m+2}{2}.\frac{m-4}{2}=m^2-2\)
\(\Leftrightarrow\frac{3m^2-10m-8}{4}=m^2-2\)
\(\Rightarrow3m^2-10m-8=4m^2-8\)
\(\Leftrightarrow m^2+10m=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=-10\end{cases}\left(tm\right)}\)
Vậy ...
Thay x=-1 vào (P), ta được:
y=-2*(-1)^2=-2
Thay x=-1và y=-2 vào (d), ta được:
-(m+1)-m-3=-2
=>-m-1-m-3=-2
=>-2m-4=-2
=>2m+4=2
=>m=-1
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
PTHDGĐ là:
\(2x+m=-x^2-2x-3\)
\(\Leftrightarrow x^2+4x+m+3=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(m+3\right)\)
\(=16-4m-12\)
=-4m+4
Để (P) cắt (d) tại đúng một điểm thì -4m+4=0
hay m=1