Giải hệ phương trình \(\hept{\begin{cases}x\left(x^2-3y^2\right)=-2\sqrt{3}\\y\left(3x^2-y^2\right)=2\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
ĐK \(x\ge-2\)
Giải PT (2)
\(\left(2\right)\Leftrightarrow\left(x+2\right)^3-y^3+\left(x-y+2\right)=0\)
\(\Leftrightarrow\left(x-y+2\right)\left[\left(x+2\right)^2+y\left(x+2\right)+y^2+1\right]=0\)
Dễ thấy \(\left(x+2\right)^2+y\left(x+2\right)+y^2+1>0\)
\(\Rightarrow x-y+2=0\)
Thay vào PT (1) là ra (dùng bđt AM-GM)
\(\hept{\begin{cases}4\sqrt{x+2}+2\sqrt{3\left(x+4\right)}=3y\left(y-1\right)+10\left(1\right)\\\left(x+2\right)^2+x=y\left(y^2+1\right)-2\left(2\right)\end{cases}}\)
ĐK: x>=-2
\(\left(2\right)\Leftrightarrow\left(x+2\right)^3-y^3+x+2+2-y=0\)
\(\Leftrightarrow\left(x+2-y\right)\left[\left(x+2\right)^2+\left(x+2\right)y+y^2\right]+x+2-y=0\)
\(\Leftrightarrow\left(x+2-y\right)\left[\left(x+2+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1\right]=0\)
\(\Leftrightarrow x+2-y=0\Leftrightarrow x+2=y\)
Thay x+2=y vào pt (1) ta được \(4\sqrt{y}+2\sqrt{3\left(y+2\right)}=3y^2-3x+10\left(3\right)\)
Áp dụng BĐT Cosi ta có:
\(\hept{\begin{cases}4\sqrt{y}\le2\left(y+1\right)\\2\sqrt{3\left(y+2\right)}\le y+5\end{cases}\Rightarrow VT\ge3y+7}\)
Mặt khác \(3\left(y-1\right)^2\ge0\Leftrightarrow3y^2-3y+10\ge3y+7\)
Vậy (3) xảy ra <=> y=1 => x=-1
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)