K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2020

Pt hoành độ giao điểm:

\(\left|2x+3\right|=3x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\\left(2x+3\right)^2=\left(3x+1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\\left(x-2\right)\left(5x+4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{1}{3}\\\left[{}\begin{matrix}x=2\\x=-\frac{4}{5}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy đồ thị 2 hàm số có 1 giao điểm

AH
Akai Haruma
Giáo viên
20 tháng 4 2021

Lời giải:

1.PT hoành độ giao điểm:

$x^2-mx-4=0(*)$ 

Khi $m=3$ thì pt trở thành: $x^2-3x-4=0$

$\Leftrightarrow (x+1)(x-4)=0$

$\Rightarrow x=-1$ hoặc $x=4$

Với $x=-1$ thì $y=(-1)^2=1$. Giao điểm thứ nhất là $(-1;1)$

Với $x=4$ thì $y=4^2=16$. Giao điểm thứ hai là $(4;16)$

2.

$\Delta (*)=m^2+16>0$ với mọi $m\in\mathbb{R}$ nên PT $(*)$ luôn có 2 nghiệm phân biệt $x_1,x_2$, đồng nghĩa với việc 2 ĐTHS luôn cắt nhau tại 2 điểm phân biệt $A(x_1,y_1); B(x_2,y_2)$

Áp dụng định lý Viet:

$x_1+x_2=m$ và $x_1x_2=-4$

Khi đó:

$y_1^2+y_2^2=49$

$\Leftrightarrow (mx_1+4)^2+(mx_2+4)^2=49$

$\Leftrightarrow m^2(x_1^2+x_2^2)+8m(x_1+x_2)=17$

$\Leftrightarrow m^2[(x_1+x_2)^2-2x_1x_2]+8m(x_1+x_2)=17$

$\Leftrightarrow m^2(m^2+8)+8m^2=17$

$\Leftrightarrow m^4+16m^2-17=0$

$\Leftrightarrow (m^2-1)(m^2+17)=0$

$\Rightarrow m^2=1$

$\Leftrightarrow m=\pm 1$

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=2x-m+1\)

=>\(\dfrac{1}{2}x^2-2x+m-1=0\)

\(\Delta=\left(-2\right)^2-4\cdot\dfrac{1}{2}\left(m-1\right)\)

\(=4-2\left(m-1\right)=4-2m+2=-2m+6\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

=>-2m+6>0

=>-2m>-6

=>m<3

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2}{\dfrac{1}{2}}=4\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{\dfrac{1}{2}}=2\left(m-1\right)\end{matrix}\right.\)

\(x_1x_2\left(y_1+y_2\right)+48=0\)

=>\(\dfrac{1}{2}\left(x_1^2+x_2^2\right)\cdot x_1x_2+48=0\)

=>\(\dfrac{1}{2}\cdot2\cdot\left(m-1\right)\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+48=0\)

=>\(\left(m-1\right)\cdot\left[4^2-2\cdot2\left(m-1\right)\right]+48=0\)

=>\(\left(m-1\right)\left(16-4m+4\right)+48=0\)

=>\(\left(m-1\right)\left(-4m+20\right)+48=0\)

=>\(\left(m-1\right)\left(-m+5\right)+12=0\)

=>\(-m^2+5m+m-5+12=0\)

=>\(-m^2+6m+7=0\)

=>\(m^2-6m-7=0\)

=>(m-7)(m+1)=0

=>\(\left[{}\begin{matrix}m=7\left(loại\right)\\m=-1\left(nhận\right)\end{matrix}\right.\)

NV
24 tháng 10 2019

a/ ĐKXĐ: ...

\(3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}=2x^2-3x+10\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2-2x+4}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2+b^2=2x^2-3x+10\)

Phương trình trở thành:

\(3ab=2a^2+b^2\)

\(\Leftrightarrow2a^2-3ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\Rightarrow\left[{}\begin{matrix}a=b\\b=2a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}=\sqrt{x^2-2x+4}\\\sqrt{x+2}=2\sqrt{x^2-2x+4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x^2-2x+4\\x+2=4x^2-8x+16\end{matrix}\right.\)

2/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y^2+xy-4y=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1+y\left(x+y-4\right)=0\\\left(x^2+1\right)\left(x+y-2\right)=y\end{matrix}\right.\)

Nhận thấy \(y=0\) không phải nghiệm, hệ tương đương:

\(\left\{{}\begin{matrix}\frac{x^2+1}{y}+x+y-2=2\\\left(\frac{x^2+1}{y}\right)\left(x+y-2\right)=1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{x^2+1}{y}=a\\x+y-2=b\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\)

\(\Rightarrow a=b=1\Rightarrow\left\{{}\begin{matrix}\frac{x^2+1}{y}=1\\x+y-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=y\\x-3=-y\end{matrix}\right.\) \(\Rightarrow x^2+x-2=0\)

NV
24 tháng 10 2019

Phương trình hoành độ giao điểm:

\(x^2-x+m=0\)

\(\Delta=1-4m>0\Rightarrow m< \frac{1}{4}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)

\(\left(x_2-x_1\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=1-4m\Rightarrow\left(x_2-x_1\right)^4=\left(1-4m\right)^2\)

\(y_2-y_1=x_2-m-\left(x_1-m\right)=x_2-x_1\)

\(\Rightarrow\left(y_2-y_1\right)^4=\left(x_2-x_1\right)^4=\left(1-4m\right)^2\)

Thay vào bài toán:

\(2\left(1-4m\right)^2=18\)

\(\Rightarrow\left(1-4m\right)^2=9\)

Nhớ chỉ lấy nghiệm \(m< \frac{1}{4}\)

20 tháng 11 2023

1: Bạn bổ sung đề bài đi bạn

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)

=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)

=>OB=4

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{4}{\left|2m-1\right|}=4\)

=>\(\dfrac{1}{\left|2m-1\right|}=1\)

=>\(\left|2m-1\right|=1\)

=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

20 tháng 11 2023

Với m=1 nha bn mik thíu

 

a: Thay x=0 và y=0 vào (d), ta được

\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)

\(\Leftrightarrow m^2-2m=0\)

=>m=0 hoặc m=2

b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)

\(\Rightarrow y=2\cdot2x-9+6=4x-3\)

Phương trình hoành độ giao điểm là:

\(x^2-4x+3=0\)

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

Câu 2: 

c) Phương trình hoành độ giao điểm của (P) và (d) là:

\(\dfrac{1}{2}x^2=2x+6\)

\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow x^2-4x+4=16\)

\(\Leftrightarrow\left(x-2\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

Thay x=6 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot6^2=18\)

Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)

Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)

Câu 3: 

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)

Ta có: \(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)

\(=2^3-3\cdot\left(-1\right)\cdot2\)

\(=8+3\cdot2\)

\(=8+6=14\)

Vậy: P=14

13 tháng 9 2015

Gọi A (xo; yo) là giao điểm của hai đồ thị

\(\in\) đồ thị hàm số y = 2x => y= 2xo

\(\in\) đồ thị hàm số y = 18/x => y= 18/xo

=> 2x= 18/xo => 2xo2 = 18 <=> x2o = 9 => x= 3 hoặc xo = - 3

+) x= 3 => y= 6 => A (3;6)

+) xo = -3 => yo = - 6 => A (-3; -6)

Vậy...

* Nhận xét: Để tìm tọa độ giao điểm của hai đồ thị hàm số

- Tìm hoành độ giao điểm :Giải  f(x) = g(x) => x = ....

- Thay x tìm được  vào hàm số y = f(x) hoặc y = g(x) => y =...