Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
a^3-b^3-c^3=3abc lớn hơn 0 suy ra a lớn hơn b;a lớn hơn c
suy ra 2a lớn hơn b+c
suy ra 4a lớn hơn 2(b+c)
suy ra 4 lớn hơn a
2(b+c)=a^2 chia hết cho 2
suy ra a chia hết cho 2
suy ra a=2 suy ra b=c=1
Ta có: \(a,b,c\in Z+\)
=> abc>0 =>3abc>0
=>a3-b3-c3>0
=>\(\hept{\begin{cases}a>b\\a>c\end{cases}}\)
=>\(a+a>b+c\)
=> \(2a>b+c\)
=>\(4a>2\left(b+c\right)\)
=>\(4a>a^2\)=>\(4>a\)(1)
Mà a2=2(b+c) (*) chia hết cho 2 =>a chia hết cho 2 (2)
Từ (1) và (2) => a=2
Thay a=2 vào (*) =>\(b+c=2\), mà \(b,c\in Z+\) =>b=c=1
KL: (a,b,c)=(2,1,1)
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
a;b;c là số nguyên dương =>3abc>0
=>a^3>b^3=> a>b
và a^3>c^3=>a>c
=>2a>b+c
=>4a>2.(b+c)=a^2
=>4>a
2.(b+c) là số chẵn =>a^2 là số chẵn=>a là số chẵn=>a=2
vì b;c<2=a và b;c là các số nguyên dương =>b=c=1
vậy a=2;b=1;c=1
Ta có: \(a^3+b^3+3\text{a}b-1\)
= \(\left(a+b\right)^3-3ab\left(a+b\right)+3ab-1\)
\(=\left[\left(a+b\right)^3-1\right]-3ab\left(a+b-1\right)\)
\(=\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)+1-3ab\right]\)
\(=\left(a+b-1\right)\left(a^2+b^2-ab+a+b+1\right)\)
Xét: \(a^3+b^3+3\text{a}b-1\) là số nguyên tố với a; b là số nguyên dương
+) Th1: a + b - 1 = 1 và \(a^2+b^2-ab+a+b+1\) là số nguyên tố
<=> a + b = 2 và 7 - 3ab là số nguyên tố
Vì a; b nguyên dương nên a + b = 2 => a = b = 1 => 7 - 3ab = 7 - 3 = 4 không là số nguyên tố
=> Loại
+) Th2: \(a^2+b^2-ab+a+b+1\) = 1 và a + b - 1 là số nguyên tố
Ta có: \(a^2+b^2-ab+a+b+1=1\)
<=> \(a^2+\left(1-b\right)a+b^2+b=0\)
<=> \(a^2+2a\frac{\left(1-b\right)}{2}+\frac{\left(1-b\right)^2}{4}-\frac{1-2b+b^2}{4}+b^2+b=0\)
<=> \(\left(a+\frac{1-b}{2}\right)^2+\frac{3b^2+6b-1}{4}=0\)(1)
Với b nguyên dương ta có: \(b\ge1\Rightarrow\frac{3b^2+6b-1}{4}\ge2>0\)
=> (1) vô nghiệm
=> Loại
Vậy không tồn tại a; b nguyên dương