Tìm x, vs a và b là hằng số:
bx - abx = b2c - ab, vs a ≠ 1, b ≠ 0.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P'\left(x\right)=2ax+b\Rightarrow P''\left(x\right)=2a\\ \Rightarrow\left\{{}\begin{matrix}P'\left(1\right)=2a+b=0\\P''\left(1\right)=2a=-2\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\end{matrix}\right.\)
Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)
\(=2ax^2-4bx+4+5x+c-11\)
\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)
\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)
a: a+c=b-8
=>a+c-b=-8
G(-1)=a-b+c=-8
b: G(0)=4; G(1)=9; G(2)=14
=>0+0+c=4 và a+b+c=9 và 4a+2b+c=14
=>c=4 và a+b=5 và 4a+2b=10
=>a=0 và b=5 và c=4
A(1)=a.12+b.1+6=a+b+6=3
=>a+b=-3
Để đa thức A(x) có bậc 1 thì a phải là 0 =>b=-3
Vậy a=0, b=-3