Tìm tất cả các số tự nhiên N thỏa mãn 6n+14 chia hết cho 2n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
5n+14n+2=5n+10+4n+2=5.(n+2)+4n+2=5+4n+25n+14n+2=5n+10+4n+2=5.(n+2)+4n+2=5+4n+2
5n+14⋮n+2⇒n+2∈Ư(5n+14)⇔n+2∈Ư(4)5n+14⋮n+2⇒n+2∈Ư(5n+14)⇔n+2∈Ư(4)
⇒n+2∈⇒n+2∈{1;2;4}{1;2;4}
n+2=1⇒n=−1n+2=1⇒n=−1
n+2=2⇒n=0n+2=2⇒n=0
n+2=4⇒n=2n+2=4⇒n=2
Mà n∈Nn∈N
Vậy n∈n∈{0;2}
\(5n+14⋮n+2\)
\(\Rightarrow5n+10+4⋮n+2\)
\(\Rightarrow5\left(n+2\right)+4⋮\left(n+2\right)\)
Vậy n+2 là Ư(4)=(1;2;4)
\(n+2=1\Rightarrow n=-1\)
\(n+2=2\Rightarrow n=0\)
\(n+2=4\Rightarrow n=2\)
Vậy có 3 số tự nhiên n thỏa mãn
\(5n+14=5n+10+4=5\left(n+2\right)+4⋮\left(n+2\right)\Leftrightarrow4⋮\left(n+2\right)\)
mà \(n\)là số tự nhiên nên \(n+2\inƯ\left(4\right)\)và \(n+2\ge2\).
Suy ra \(n+2\in\left\{2,4\right\}\Leftrightarrow n\in\left\{0,2\right\}\).
\(\Leftrightarrow10n+14⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3;9;-9\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2;2;-4;8;-10\right\}\)
hay \(n\in\left\{0;-1;1;-2;4;-5\right\}\)
\(5n+14=5n+10+4=5\left(n+2\right)+4⋮\left(n+2\right)\Leftrightarrow4⋮\left(n+2\right)\)
mà \(n\)là số tự nhiên nên \(n+2\inƯ\left(4\right)=\left\{2,4\right\}\Leftrightarrow n\in\left\{0,2\right\}\).
5n+14 chia hết cho n+2
=>5n+10+4 chia hết cho n+2
=>5(n+2)+4 chia hết cho n+2
=>4 chia hết cho n+2
=>n+2 thuộc Ư(4)={1;2;4}
=>n thuộc{0;2}
\(6n+14⋮2n+2\Leftrightarrow6n+6+8⋮2n+2\)
\(\Leftrightarrow8⋮2n+2\) (do \(6n+6=3\left(2n+2\right)⋮2n+2\))
\(\Leftrightarrow4⋮n+1\)
\(\Rightarrow n+1=Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow n=\left\{0;1;3\right\}\)