K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

Chọn A.

Ta có: I là trung điểm của cạnh AD nên

17 tháng 12 2023

a) Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

         \(=\overrightarrow{AB}+k\overrightarrow{BC}\)

         \(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

         \(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)

             \(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)

Để \(AM\perp NP\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)

\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)

\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)

\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)

\(\Leftrightarrow17k=10\)

\(\Leftrightarrow k=\dfrac{10}{17}\)

Gọi O là trung điểm của AM

BM=BC/2=a/2

\(\Leftrightarrow AM=\dfrac{a\sqrt{3}}{2}\)

\(\Leftrightarrow MO=\dfrac{a\sqrt{3}}{4}\)

Xét ΔOMB vuông tại M có 

\(BO^2=OM^2+BM^2\)

\(=a^2\cdot\dfrac{3}{16}+a^2\cdot\dfrac{1}{4}=a^2\cdot\dfrac{7}{16}\)

\(\Leftrightarrow BO=\dfrac{a\sqrt{7}}{4}\)

Xét ΔBMA có BO là đường trung tuyến

nên \(\overrightarrow{BM}+\overrightarrow{BA}=2\cdot\overrightarrow{BO}\)

\(\Leftrightarrow\left|\overrightarrow{BM}+\overrightarrow{BA}\right|=\dfrac{a\sqrt{7}}{2}\)

29 tháng 10 2023

a: Gọi H là trung điểm của BC

Xét ΔABC có AH là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AH}\)

ΔABC đều có AH là đường trung tuyến

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=3a\cdot\dfrac{\sqrt{3}}{2}\)

=>\(2\cdot AH=3a\sqrt{3}\)

=>\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AH=3a\sqrt{3}\)

b:

Gọi I là trung điểm của AH

I là trung điểm của AH

=>\(IA=IH=\dfrac{3a\sqrt{3}}{2}\)

ΔABC đều

mà AH là đường trung tuyến

nên AH vuông góc BC

ΔIHC vuông tại H

=>\(CI^2=HI^2+HC^2\)

=>\(CI^2=\left(\dfrac{3a\sqrt{3}}{2}\right)^2+\left(1,5a\right)^2=9a^2\)

=>CI=3a

 

 \(\left|\overrightarrow{CA}-\overrightarrow{HC}\right|=\left|\overrightarrow{CA}+\overrightarrow{CH}\right|\)

\(=\left|2\cdot\overrightarrow{CI}\right|=2CI\)

\(=2\cdot3a=6a\)

12 tháng 6 2018

18 tháng 12 2023

ta có: I là trung điểm của AB

=>\(IA=IB=\dfrac{AB}{2}\)

M là trung điểm của IB

=>\(MI=MB=\dfrac{IB}{2}=\dfrac{AB}{4}\)

AM=AI+IM=1/2AB+1/4AB=3/4AB

=>AM=MB

=>\(\overrightarrow{AM}=3\overrightarrow{MB}\)

=>\(\overrightarrow{AM}-3\overrightarrow{MB}=\overrightarrow{0}\)

=>\(\overrightarrow{AM}+3\overrightarrow{BM}=\overrightarrow{0}\)

=>Chọn C

NV
5 tháng 11 2021

Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

Cộng vế:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b. Từ câu a ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)

1 tháng 9 2021

a)các vectow cùng phương với AM LÀ: MA ;MB;BM;BA;AB;PN;NP

b)các vectow cùng hướng  MN là:BP;PC;BC

c)các vectow ngược hướng với BC là:CP;CP;NM