\(Bài\) \(1\)\(Cho\)\(a,b,c\ge0;a+b+c=6.\)TÌm giá trị ngỏ nhất của biểu thức:\(M=\sqrt{\left(a+1\right)^3}+\sqrt{\left(b+2\right)^3}+\sqrt{\left(c+2\right)^3}\)Bài 2: \(Cho\)\(x=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\).Tính giá trị biểu thức:\(A=\left(x^6-3x^5-8x^4+16x^3+25x^2-2x-3\right)^{2020}+2019\left(x^4-4x^3+x^2+6x-3\right)^{2021}\)Bài 3: Giải các phương trình...
Đọc tiếp
\(Bài\) \(1\)\(Cho\)\(a,b,c\ge0;a+b+c=6.\)TÌm giá trị ngỏ nhất của biểu thức:
\(M=\sqrt{\left(a+1\right)^3}+\sqrt{\left(b+2\right)^3}+\sqrt{\left(c+2\right)^3}\)
Bài 2: \(Cho\)\(x=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\).Tính giá trị biểu thức:
\(A=\left(x^6-3x^5-8x^4+16x^3+25x^2-2x-3\right)^{2020}+2019\left(x^4-4x^3+x^2+6x-3\right)^{2021}\)
Bài 3: Giải các phương trình sau:
\(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình