K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2020

\(M=2+2^2+2^3+...+2^{20}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{17}\left(1+2+2^2+2^3\right)\)

\(=2\cdot15+...+2^{17}\cdot15\)

\(=15\left(2+...+2^{17}\right)⋮5\)

vậy....

23 tháng 10 2020

M = 2 + 22 + 23 + ... + 220

= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )

= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 217( 1 + 2 + 22 + 23 )

= 2.15 + 25.15 + ... + 217.15

= 15( 2 + 25 + ... + 217 ) chia hết cho 5 ( đpcm )

18 tháng 12 2018

\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)

\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)

b, tự tương

18 tháng 12 2018

\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\)         (  vì \(28a+28⋮7\) ) 

                     \(\Leftrightarrow30a+33⋮7\)

                     \(\Leftrightarrow3.\left(10a+11\right)⋮7\)

                     \(\Leftrightarrow10a+11⋮7\)   (  vì \(\left(3;7\right)=1\) ) 

Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)

Câu b bn xem lại đề hộ mk chút nhé!

8 tháng 8 2016

Bài này khá dễ, bạn hãy theo dõi bài giải của mình nhé! ^^

Ta có : 

220 đồng dư với 118 (mod 102) => 220^11969 đồng dư với 118 (mod 102)

119 đồng dư với 17 (mod 102) => 119^69220 đồng dư với 17 (mod 102)

69 đồng dư với 69 (mod 102) => 69^220119 đồng dư với 69 (mod 102)

=> 220^11969 + 119^69220 + 69^220119 đồng dư với (118 + 17 + 69) (mod 102)

=> 220^11069 + 119^69220 + 69^220119 chia hết cho 102 

11 tháng 8 2016

ko khó đâu bn - chỉ cần giả 1 cách đơn giản như sau : hihi

220 = 0 ( mod2) \(\Rightarrow220^{11969}=0\)(mod2)

119 = 1 ( mod2) \(\Rightarrow119^{69220}=1\) ( mod2)

69 = -1 *(mod2) \(\Rightarrow69^{220119}=-1\)(mod2)

\(\Rightarrow A=0\)(mod2) hay A \(⋮\)2

Tương tự ta thấy : A \(⋮\)3 và A\(⋮\)17

Vì 2 .3 . 17 = 102

\(\Rightarrow\) A \(⋮\) 102 ( đpcm,)

 

12 tháng 2 2017

bạn có sách toán nâng cao và các chuyên đề không

12 tháng 2 2017

ket ban

25 tháng 3 2019

* m^2+n^2 chia hết cho 3 thì m,n chia hết cho 3

Giả sử m không chia hết cho 3 => m^2 o chia hết cho 3 mà m^2 chia 3 dư 0 hoặc 1 => m^2 chia 3 dư 1 => n^2 chia 3 dư 2 (vô lý)

=>giả sử sai => m chia hết cho 3 

                         Chứng minh tương tự n chia hết cho 3

* m,n chia hết cho 3 => m^2+n^2  chia hết cho 3 

Vì m,n chia hết cho 3 => m^2, n^2 chia hết cho 3 => m^2+n^2 chia hết cho 3

5 tháng 12 2017

b)   \(69^2-69.5\)
= 69 . 69 -69 . 5
= 69 . (69 - 5)
=69 . 64
Vì 64 \(⋮\)32 nên 69 . 64 hay \(69^2\)- 69.5 \(⋮\)32

25 tháng 7 2016

\(1.\)Ta có: \(8.10^{2016}+2017=8.10...000+2017=80...000+2017=80...2017\)

Mà tổng các chữ số của số trên là:  \(8+0+...+2+0+1+7=18\)chia hết cho 9

\(\Rightarrow\)\(8.10^{2016}+2017\)chia hết cho 9

Vậy  \(\frac{8.10^{2016}+2017}{9}\)có giá trị là 1 số tự nhiên.

\(2.\)Ta có:   220 đồng dư với 0 (mod 2) nên \(220^{11969}\)đồng dư với 0 (mod 2)

                     119 đồng dư với 1 (mod 2) nên \(119^{69220}\)đồng dư với 1 (mod 2)

                     69 đồng dư với -1 (mod 2) nên \(69^{220119}\)đồng dư với -1 (mod 2)

Vậy A đồng dư với 0 (mod 2) suy ra A chia hết cho 2.

Mặt khác:   220 đồng dư với 1 (mod 3) nên \(220^{11969}\)đồng dư với 1 (mod 3)

                    119 đồng dư với -1 (mod 3) nên \(119^{69220}\)đồng dư với -1 (mod 3)

                    69  đồng dư với 0 (mod 3) nên \(69^{220119}\)đồng dư với 0 (mod 3)

Vậy A đồng dư với 0 (mod 3) suy ra A chia hết cho 3.

Ta lại có:   220 đồng dư với -1 (mod 17) nên \(220^{11969}\)đồng dư với -1 (mod 17)

                    119 đồng dư với 0 (mod 17) nên \(119^{69220}\)đồng dư với 0 (mod 17)

                    69  đồng dư với 1 (mod 17) nên \(69^{220119}\)đồng dư với 1 (mod 17)

Vậy A đồng dư với 0 (mod 17) suy ra A chia hết cho 17.

Vì 2, 3, 17 là các số nguyên tố  \(\Rightarrow\)A  chia hết cho 102 (vì 2.3.17 = 102).

6 tháng 12 2014

M=75.(42013+42012+...+43+42+1)+25

=75.42013 + 75.42012 + ...+ 75.4+ 75.4+ 75.1 + 25

=75.4.42012 75.4.42011 +...75.4.4+ 75.4.4 + (75+25)

=300.42012 + 300.42012 +...+ 300.4+ 300.4 + 100

=100.( 3.42012 + 3.42012 +...+ 3.4+ 3.4 + 1) --- điều cần phải chứng minh