K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2020

a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)

\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)

\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)

\(=3\sqrt{3}\)

Vậy..

3 tháng 8 2020

b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)

\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)

\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)

\(=\sqrt{5}-2-\sqrt{5}-2\)

\(=-4\)

Vậy..

a) Ta có:

5√15+12√20+√5515+1220+5

=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35

b)  Ta có: 

√12+√4,5+√12,512+4,5+12,5

=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922

c) Ta có:

√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5

d) Ta có:

0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2



 

Bạn giải bài đâu vậy? Kiếm điểm hỏi đáp hở, Boy anime?

Câu 1:   Kết quả so sánh 3 và căn 8là:   A. 3 > \(\sqrt{8}\)        B. 3 < \(\sqrt{8}\)       C. 3 ≤ \(\sqrt{8}\)          D. \(\sqrt{3}\)< \(\sqrt{8}\)Câu 2. \(\sqrt{3x-2}\)  xác định khi và chỉ khi:A.    x ≥ 0             B. x ≥ \(\dfrac{2}{3}\)              C. x ≥ \(\dfrac{3}{2}\)                D. x < \(\dfrac{2}{3}\)Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\)  bằng: A.  \(3-2\sqrt{2}\)      B.  \(1-\sqrt{2}\)           C.  \(\sqrt{2}-1\)           D. \(2\sqrt{2}+3\)Câu 4. Kết...
Đọc tiếp

Câu 1:   Kết quả so sánh 3 và căn 8là:

  A. 3 > \(\sqrt{8}\)        B. 3 < \(\sqrt{8}\)       C. 3 ≤ \(\sqrt{8}\)          D. \(\sqrt{3}\)\(\sqrt{8}\)

Câu 2. \(\sqrt{3x-2}\)  xác định khi và chỉ khi:

A.    x ≥ 0             B. x ≥ \(\dfrac{2}{3}\)              C. x ≥ \(\dfrac{3}{2}\)                D. \(\dfrac{2}{3}\)

Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\)  bằng:

 A.  \(3-2\sqrt{2}\)      B.  \(1-\sqrt{2}\)           C.  \(\sqrt{2}-1\)           D. \(2\sqrt{2}+3\)

Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:

            A.   \(-b\sqrt{a}\)         B.    \(b\sqrt{a}\)     C  .\(a\sqrt{b}\)            D.  \(-a\sqrt{b}\)

Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\)  (với a b cùng dấu) ta được:

   A.  \(\dfrac{\sqrt{2ab}}{a}\)         B.  \(\dfrac{\sqrt{2ab}}{b}\)        C.  \(\dfrac{\sqrt{2ab}}{-b}\)                D.  \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)

Câu 6: Hàm số y =  \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:

          A. m ≠ 5            B. m > 5             C. m < 5           D. m  = 5

Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:

     A. (d1)          B. (d2)           C. (d3)             D. (d1) và (d3)

Câu 8:   Hai đường thẳng y = -3x +4  và y = (m+1)x +m  song song với nhau khi m bằng:

          A. 4                      B. -2                     C. -3                     D. -4

Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?

   A. y =   \(7+\left(\sqrt{2}-3\right)x\)       B. y = \(4-\left(1-\sqrt{3}\right)x\)           C. y = \(-5-\left(1-\sqrt{2}\right)x\)            D. y = 4+ x

Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?

     A. y=x +2 và  y= -x+2                   B. y= -3-2x và  y= -2x-3                

C. y= 2x -1 và  y= 2+3x                     D. y=1 – 2x và  y= -2x+3

Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?

A.y+ x = -1           B. 2x + y = 1        C. 2y = 2 – 2x      D. 3y = -3x +1

Câu 12:  Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?

A.(1; -1)             B. ( -1; 1)                  C. (3;2)                D. (2; 3)

 

1

Câu 1: A

Câu 2: B

Câu 3: C

5 tháng 8 2019

a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)

\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)

\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)

\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)

5 tháng 8 2019

bạn làm tương tự nha

21 tháng 10 2023

1:

a: \(\sqrt{25}+\sqrt{49}=5+7=12\)

b: \(\sqrt{121}-\sqrt{81}=11-9=2\)

2: x>-2

=>2x>-4

=>2x+1>-3

=>Với x>-2 thì \(\sqrt{2x+1}\) chưa chắc có nghĩa

3:

a: \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(=\left|\sqrt{3}-1\right|-\sqrt{3}\)

\(=\sqrt{3}-1-\sqrt{3}=-1\)

b: \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)

\(=\left(3\sqrt{7}-2\sqrt{14}\right)\cdot\sqrt{7}+14\sqrt{2}\)

\(=21-14\sqrt{2}+14\sqrt{2}=21\)

c:

\(\dfrac{\sqrt{27}-\sqrt{108}+\sqrt{12}}{\sqrt{3}}\)

\(=\dfrac{3\sqrt{3}-6\sqrt{3}+2\sqrt{3}}{\sqrt{3}}=3+2-6=-1\)

28 tháng 9 2020

Xét phân thức phụ sau, với n nguyên dương lớn hơn 1 ta có:

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\left(n+1\right)-n}{\left(n+1\right)\sqrt{n}}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2\sqrt{n}}=2\left(\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}\right)\sqrt{n}}\right)\)

\(=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được:

\(A=2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2019}}-\frac{1}{\sqrt{2020}}\right)\)

\(A=2-\frac{2}{\sqrt{2020}}< 2=B\)

Vậy A < B