K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

Câu hỏi của Lê Chí Cường - Toán lớp 8 - Học toán với OnlineMath Em xem bài làm ở link này nhé!

Tham khảo:

loading...

 

31 tháng 10 2021

a: Xét tứ giác MNDC có 

ND//MC

ND=MC

Do đó: MNDC là hình bình hành

31 tháng 8 2016

?o?n th?ng f: ?o?n th?ng [A, D] ?o?n th?ng h: ?o?n th?ng [B, C] ?o?n th?ng i: ?o?n th?ng [C, D] ?o?n th?ng j: ?o?n th?ng [B, A] ?o?n th?ng k: ?o?n th?ng [P, N] ?o?n th?ng m: ?o?n th?ng [P, M] ?o?n th?ng n: ?o?n th?ng [M, Q] ?o?n th?ng p: ?o?n th?ng [N, Q] ?o?n th?ng q: ?o?n th?ng [C', B] ?o?n th?ng r: ?o?n th?ng [D, A'] ?o?n th?ng s: ?o?n th?ng [C', D] ?o?n th?ng t: ?o?n th?ng [B, A'] A = (-1.44, -1.78) A = (-1.44, -1.78) A = (-1.44, -1.78) D = (4.76, -1.82) D = (4.76, -1.82) D = (4.76, -1.82) ?i?m B: ?i?m tr�n g ?i?m B: ?i?m tr�n g ?i?m B: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m C: ?i?m tr�n g ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m P: ?i?m tr�n h ?i?m P: ?i?m tr�n h ?i?m P: ?i?m tr�n h ?i?m Q: Giao ?i?m c?a l, f ?i?m Q: Giao ?i?m c?a l, f ?i?m Q: Giao ?i?m c?a l, f ?i?m C': C ??i x?ng qua P ?i?m C': C ??i x?ng qua P ?i?m C': C ??i x?ng qua P ?i?m A': A ??i x?ng qua Q ?i?m A': A ??i x?ng qua Q ?i?m A': A ??i x?ng qua Q

Lấy C' thuộc BC sao cho P là trung điểm CC'. Tương tự lấy A' trên AD sao cho Q là trung điểm AA'.

Xét tam giác CC'D có PN là đường trung bình nên PN song song và bằng một nửa C'D (1).

Tương tự xét tam giác ABA' có MQ là đường trung bình nên MQ song song và bằng một nửa BA' (2).

Mà giả thiết lai jcho MNPQ là hình bình hành nên PN // MQ và PN = MQ (3).

Từ (1), (2), (3) ta suy ra C'D // BA' và C'D = BA'.

Vậy thì tứ giác C'BAD là hình bình hành hay C'B // DA', hay BC // AD.

23 tháng 11 2017

Tứ giác MPNQ luôn là hình bình hành.

16 tháng 12 2021

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành

\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)

Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)

Do đó AHCK là hình bình hành

Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao

Do đó \(AH\bot HC\)

Vậy AHCK là hình chữ nhật

\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK

Vậy H,M,K thẳng hàng

\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M

Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)

Do đó \(HK//AB\)

Mà \(HK\bot AC\) nên \(AC\bot AB\)

Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông

a: Xét tứ giác ABPD có 

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD
P là trung điểm của CD

Do đó: QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

b: Để MNPQ là hình thoi thì MN=MQ

hay AC=BD