K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2020

a. M = 9 - 6x + x2

= ( 3 - x )2\(\ge\)0\(\forall\)x

=> Đpcm

b. B = 4x2 + 4x + 2007

= 4x2 + 4x + 1 + 2006

= 4 ( x +\(\frac{1}{2}\))2 + 2006\(\ge\)2006\(\forall\)x

=> Đpcm

22 tháng 10 2020

M = 9 - 6x + x2

= ( 3 - x )2 ≥ 0 ∀ x ( đpcm )

B = 4x2 + 4x + 2007

= ( 4x2 + 4x + 1 ) + 2006

= ( 2x + 1 )2 + 2006 ≥ 2006 > 0 ∀ x ( đpcm )

AH
Akai Haruma
Giáo viên
27 tháng 8 2021

Lời giải:

a. $-x^2-2x-8=-7-(x^2+2x+1)=-7-(x+1)^2$
Vì $(x+1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên

$-x^2-2x-8=-7-(x+1)^2\leq -7< 0$ với mọi $x\in\mathbb{R}$

Vậy biểu thức luôn nhận giá trị âm với mọi $x$

b.

$-x^2-5x-11=-11+2,5^2-(x^2+5x+2,5^2)< -11+3^2-(x+2,5)^2$

$=-2-(x+2,5)^2\leq -2< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

c.

$-4x^2-4x-2=-1-(4x^2+4x+1)=-1-(2x+1)^2\leq -1< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

d.

$-9x^2+6x-7=-6-(9x^2-6x+1)=-6-(3x-1)^2\leq -6< 0$ với mọi $x\in\mathbb{R}$ (đpcm)

21 tháng 9 2022

Không biê

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

22 tháng 10 2020

A = x^2-4x +4 + 5 = (x-2)^2 + 5 >= 5 > 0

22 tháng 10 2020

A = x2 - 4x + 9

= ( x2 - 4x + 4 ) + 5

= ( x - 2 )2 + 5 ≥ 5 > 0 ∀ x ( đpcm )

N = 1 - x + x2

= ( x2 - x + 1/4 ) + 3/4

= ( x - 1/2 ) + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

a: ta có: \(A=x^2-3x+10\)

\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}\)

\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{31}{4}>0\forall x\)

b: Ta có: \(B=x^2-5x+2021\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{8015}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{8015}{4}>0\forall x\)

11 tháng 7 2019

\(B=\left(2x\right)^2+2x.2+1+2006\)

\(=\left(2x+1\right)^2+2006\)

Vì \(\left(2x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(2x+1\right)^2+2006\ge0+2006;\forall x\)

Hay \(B\ge2006>0;\forall x\)

a: Δ=(-4)^2-4(4m+3)

=16-16m-12

=-16m+4

Để phương trình có hai nghiệm phân biệt thì -16m+4>0

=>-16m>-4

=>m<1/4

b: x1^2+x2^2=9

=>(x1+x2)^2-2x1x2=9

=>4^2-2(4m+3)=9

=>2(4m+3)=16-9=7

=>4m+3=7/2

=>4m=1/2

=>m=1/8(nhận)

a)x2-6x+9

=x2-2.x.3+32

=(x-3)2

b)4x2+4x+1

=(2x)2+2.2x.1+12

=(2x+1)2

c)4x2+12xy+9y2

=(2x)2+2.2x.3y+(3y)2

=(2x+3y)2

d)4x4-4x2+4

=(2x2)2-2.2x2.2+22

=(2x2-2)2