a+b/5 = a-b/1 = ab/12
Tìm a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo AM - GM :
\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow a+b+2ab\le\dfrac{a^2+b^2+2ab+2a+2b}{2}\)
\(\Leftrightarrow a^2+b^2+2ab+2a+2b\ge24\)
\(\Leftrightarrow\left(a+b+6\right)\left(a+b-4\right)\ge0\)
\(\Leftrightarrow A\ge4\) (do a,b dương)
Dấu"=" \(\Leftrightarrow a=b=2\)
Ta có: \(A+B+C=0\)
\(\Leftrightarrow3x^2y+5xy^2-2xy+1+2x^2y-7xy^2+6xy-8-5x^2y+4xy^2-4xy+12=0\)
\(\Leftrightarrow2xy^2+5=0\)
\(\Leftrightarrow2x\cdot\left(-2\right)^2+5=0\)
\(\Leftrightarrow8x+5=0\)
\(\Leftrightarrow8x=-5\)
hay \(x=-\dfrac{5}{8}\)
Vậy: \(x=-\dfrac{5}{8}\)
\(A^2+B^2=\left(A+B\right)^2-2AB=5\)
\(A^3+B^3=\left(A+B\right)^3-3AB\left(A+B\right)=9\)
\(A^5+B^5=\left(A^2+B^2\right)\left(A^3+B^3\right)-\left(AB\right)^2\left(A+B\right)=5.9-2^2.3=...\)
B.
\(A^2+B^2=\left(A+B\right)^2-2AB=2\)
\(A^6+B^6=\left(A^2\right)^3+\left(B^2\right)^3=\left(A^2+B^2\right)^3-3\left(AB\right)^2\left(A^2+B^2\right)=2^3-3.1^2.2=...\)
Ta có: \(A^2+B^2=\left(A+B\right)^2-2AB=3^2-2.2=5\)
\(A^5+B^5=\left(A^3+B^3\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=\left(A+B\right)\left(A^2-AB+B^2\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=3\left(5-2\right).5-2^2.3=33\)
\(log_65=\dfrac{1}{log_56}=\dfrac{1}{log_52+log_53}=\dfrac{1}{a+b}\)
=>Chọn B
Ta có: a+b=5
\(\Leftrightarrow\left(a+b\right)^2=25\)
\(\Leftrightarrow a^2+b^2+2ab=25\)
\(\Leftrightarrow2ab=16\)
hay ab=8
Ta có: \(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=5^3-3\cdot8\cdot5=5\)
\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{a+b+a-b}{5+1}=\frac{a}{3}=\frac{ab}{12}\Rightarrow b=4.\)
\(\Rightarrow\frac{a+b}{5}=\frac{a}{3}\) Thay b=4 vào \(\Rightarrow\frac{a+4}{5}=\frac{a}{3}\Rightarrow a=6\)