K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

Phương pháp tách khá dễ thôi

Ta có: \(\sqrt{43-30\sqrt{2}}\)

\(=\sqrt{25-30\sqrt{2}+18}\)

\(=\sqrt{\left(5\right)^2-2\cdot5\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2}\)

\(=\sqrt{\left(5-3\sqrt{2}\right)^2}\)

\(=\left|5-3\sqrt{2}\right|\)

\(=5-3\sqrt{2}\)

17 tháng 10 2021

1d 2a 3c 4b 5a

12 tháng 6 2018

1)\(43-30\sqrt{2}=\left(5-3\sqrt{2}\right)^2\)

2)\(21+4\sqrt{5}=\left(1+2\sqrt{5}\right)^2\)

13 tháng 6 2018

1/ \(5^2-2\cdot5\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2=\left(5-3\sqrt{2}\right)^2\)

2/\(1^2+2\cdot2\sqrt{5}+\left(2\sqrt{5}\right)^2=\left(1+2\sqrt{5}\right)^2\)

23 tháng 7 2021

1.

 Ta có: \(A=\sqrt{31-2\sqrt{30}}=\sqrt{\left(\sqrt{30}-1\right)^2}=\left|\sqrt{30}-1\right|=\sqrt{30}-1\)

\(B=\sqrt{11-2\sqrt{30}}=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}=\left|\sqrt{6}-\sqrt{5}\right|=\sqrt{6}-\sqrt{5}\)

\(C=\sqrt{13-2\sqrt{30}}=\sqrt{\left(\sqrt{10}-\sqrt{3}\right)^2}=\left|\sqrt{10}-\sqrt{3}\right|=\sqrt{10}-\sqrt{3}\)

\(D=\sqrt{39-6\sqrt{30}}=\sqrt{\left(\sqrt{30}-3\right)^2}=\left|\sqrt{30}-3\right|=\sqrt{30}-3\)

\(A=\sqrt{31-2\sqrt{30}}=\sqrt{30}-1\)

\(B=\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)

\(C=\sqrt{13-2\sqrt{30}}=\sqrt{10}-\sqrt{3}\)

\(D=\sqrt{39-6\sqrt{30}}=\sqrt{30}-3\)

5 tháng 9 2023

1) \(\sqrt{x^2+1}=\sqrt{5}\)

\(\Leftrightarrow x^2+1=5\)

\(\Leftrightarrow x^2=5-1\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x^2=2^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

2) \(\sqrt{2x-1}=\sqrt{3}\) (ĐK: \(x\ge\dfrac{1}{2}\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=3+1\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=\dfrac{4}{2}\)

\(\Leftrightarrow x=2\left(tm\right)\)

3) \(\sqrt{43-x}=x-1\) (ĐK: \(x\le43\))

\(\Leftrightarrow43-x=\left(x-1\right)^2\)

\(\Leftrightarrow x^2-2x+1=43-x\)

\(\Leftrightarrow x^2-x-42=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=-6\left(tm\right)\end{matrix}\right.\)

4) \(x-\sqrt{4x-3}=2\) (ĐK: \(x\ge\dfrac{3}{4}\))

\(\Leftrightarrow\sqrt{4x-3}=x-2\)

\(\Leftrightarrow4x-3=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+4=4x-3\)

\(\Leftrightarrow x^2-8x+7=0\)

\(\Leftrightarrow\left(x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\)

5) \(\dfrac{\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\) (ĐK: \(x\ge0\))

\(\Leftrightarrow\sqrt{x}+3=2\sqrt{x}+2\)

\(\Leftrightarrow2\sqrt{x}-\sqrt{x}=3-2\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1^2\)

\(\Leftrightarrow x=1\left(tm\right)\)

5 tháng 9 2023

1)

\(\sqrt{x^2+1}=\sqrt{5}\\ \Leftrightarrow x^2+1=5\\ \Leftrightarrow x^2=5-1=4\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy PT có nghiệm `x=2` hoặc `x=-2`

2)

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

\(\sqrt{2x-1}=\sqrt{3}\\ \Leftrightarrow2x-1=3\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\left(tm\right)\)

Vậy PT có nghiệm `x=2`

3)

\(ĐKXĐ:x\le43\)

PT trở thành:

\(43-x=\left(x-1\right)^2=x^2-2x+1\\ \Leftrightarrow43-x-x^2+2x-1=0\\ \Leftrightarrow-x^2+x+42=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm `x=-6` hoặc `x=7`

4)

ĐKXĐ: \(x\ge\dfrac{3}{4}\)

PT trở thành:

\(\sqrt{4x-3}=x-2\\ \Leftrightarrow4x-3=\left(x-2\right)^2=x^2-4x+4\\ \Leftrightarrow4x-3-x^2+4x-4=0\\ \Leftrightarrow-x^2+8x-7=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=7\left(tm\right)\end{matrix}\right.\)

Vậy PT có nghiệm \(x=1\) hoặc \(x=7\)

5) 

ĐKXĐ: \(x\ge0\)

PT trở thành:

\(\sqrt{x+3}=2\sqrt{x}+2\\ \Leftrightarrow x+3=\left(2\sqrt{x}+2\right)^2=4x+8\sqrt{x}+4\\ \Leftrightarrow x+3-4x-8\sqrt{x}-4=0\\ \Leftrightarrow-3x-8\sqrt{x}-1=0\left(1\right)\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)

Khi đó:

(1)\(\Leftrightarrow3t^2+8t+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-4+\sqrt{13}}{3}\left(loại\right)\\t=\dfrac{-4-\sqrt{13}}{3}\left(loại\right)\end{matrix}\right.\)

Vậy PT vô nghiệm.

20 tháng 8 2020

a) \(21-8\sqrt{5}=16-2\times4\times\sqrt{5}+5=\left(4-\sqrt{5}\right)^2\)

b) \(47-12\sqrt{11}=36-2\times6\times\sqrt{11}+11=\left(6-\sqrt{11}\right)^2\)

c) \(13-4\sqrt{3}=12-2\times1\times\sqrt{3}+1=\left(2\sqrt{3}-1\right)^2\)

d) \(43+30\sqrt{2}=25+2\times5\times3\sqrt{2}+18=\left(5+3\sqrt{2}\right)^2\)

e) \(41+24\sqrt{2}=9+2\times3\times4\sqrt{2}+32=\left(3+4\sqrt{2}\right)^2\)

g) \(29-12\sqrt{5}=9+2\times3\times2\sqrt{5}+20=\left(3+2\sqrt{5}\right)^2\)

h) \(49-8\sqrt{3}=48-2\times4\sqrt{3}\times1+1=\left(4\sqrt{3}-1\right)^2\)

i) \(37-12\sqrt{7}=28-2\times3\times2\sqrt{7}+9=\left(2\sqrt{7}-3\right)^2\)

6 tháng 9 2019

đẹp trai thì cũng đi tù thôi em ạ

đẹp trai--> đi tù

Logic lạ đó :))

NV
10 tháng 4 2022

Đề là như vậy hay là \(B=8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\) vậy em?

Căn thức phải trùm hết \(24\sqrt{3}\) với hợp lý chứ nhỉ?

10 tháng 4 2022

dạ là trùm hết nhưng em viết thiếu thưa thầy