rút gọn các biểu thức sau
a) \(\frac{4}{\sqrt{10}}\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)\)
b)\(\left(4+\sqrt{\text{15}}\right).\left(\sqrt{10}-\sqrt{6}\right).\sqrt{\text{4}-\sqrt{15}}\)
c)\(\sqrt{\text{4 }\sqrt{\text{6}}\text{ }+8\sqrt{\text{3 }}+4\sqrt{2}+18}\)
Lời giải:
a)
\(\frac{4}{\sqrt{10}}(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})=\frac{4}{\sqrt{20}}(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}})\)
\(=\frac{4}{2\sqrt{5}}(\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}})=\frac{2}{\sqrt{5}}[\sqrt{(\sqrt{5}+1)^2}+\sqrt{(\sqrt{5}-1)^2}]\)
\(=\frac{2}{\sqrt{5}}(\sqrt{5}+1+\sqrt{5}-1)=\frac{2}{\sqrt{5}}.2\sqrt{5}=4\)
b)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)
\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})\)
\(=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)
c)
\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+8\sqrt{3}+18}=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(3+1+2\sqrt{3})+2}\)
\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(\sqrt{3}+1)^2+2}\)
\(=\sqrt{(2\sqrt{3}+2)^2+(\sqrt{2})^2+2.(2\sqrt{3}+2).\sqrt{2}}\)
\(=\sqrt{(2\sqrt{3}+2+\sqrt{2})^2}=2\sqrt{3}+2+\sqrt{2}\)